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A B S T R A C T

Errors are prevalent in spreadsheets and can be extremely difficult to find. A number of audits of existing

spreadsheets have been reported, but few details have been given about how the audits were performed.

We developed and tested a new spreadsheet auditing protocol designed to find errors in operational

spreadsheets. Our work showed which auditing procedures, used in what sequence and combination,

were most effective across a wide range of spreadsheets. It also provided useful information on the size

and complexity of operational spreadsheets, as well as the frequency with which certain types of errors

occur.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Errors are a major problem in traditional software program-
ming, and methods have been developed to find and correct them
[23]. Analogous methods are rarely used for spreadsheet models,
possibly because the typical spreadsheet developer is unaware of
the number and significance of errors or unaware of effective
testing procedures. In fact, according to our recent survey [22],
fewer than 10% of Excel experts used auditing software. An earlier
study [4] showed that spreadsheet users generally did not use such
features as built-in auditing tools.

Practitioners have recommended many different approaches to
testing a spreadsheet for errors: using extreme inputs, reviewing
each formula, sensitivity testing, etc. Some stress the use of tools,
while others stress the use of people. Although some audit results
have been published, few details have been given as to how the
audit was conducted. After 25 years of spreadsheet use by millions
of people, we cannot say which auditing methods work best for
which types of spreadsheets and developers.

As part of a research effort on how users and their organizations
work with spreadsheets, we developed an explicit auditing
protocol and tested it on a significant number of operational
spreadsheets. Here we describe the protocol and show how it
improves auditing procedures.
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2. Previous work on spreadsheet audits

Two main approaches characterize research on spreadsheet
auditing: field audits and laboratory experiments. The first involves
testing spreadsheets that are already being used in organizations:
the auditor does not know how many errors exist in a spreadsheet
application or where they are located. Sometimes the auditor has
access to the spreadsheet developer and can ask for clarification
about its purpose and design as well as the accuracy of its details.
Otherwise, the auditor may have to test the spreadsheet without
access to the developer. Some, but not all, field audits use auditing
software.

In a laboratory experiment the researcher creates spreadsheets
and seeds them with errors. The task of the subjects in the
experiment is to locate these errors. In some cases the subjects are
given instructions for conducting their audits; otherwise they are
left to their own devices. Laboratory experiments can also be used
to evaluate and improve auditing software.

Much of the literature on spreadsheet errors and auditing
[20,21] is concerned with the errors that are found rather than the
procedures that are used. Although many authors have offered
advice on auditing a spreadsheet, no studies have compared
alternative auditing approaches on operational spreadsheets.

2.1. Field audits

In an analysis of the incidence of errors, Panko [16] cited seven
reports on field audits of spreadsheets. The earliest was Davies and
Ikin [7], who tested 19 operational spreadsheets from 10 different
organizations but provided no details on how the audits were
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conducted. Cragg and King [6] inspected 20 operational spread-
sheets from 10 companies. One person spent an average of 2 h in
testing a spreadsheet, but the authors gave no details about their
testing methods. Panko [18] reported on the audit of a large-scale
capital budgeting spreadsheet at NYNEX. Each of its six main
modules was audited by a three-person team, which had access to
the developer. The team verified formulae and checked cell
references. One cell in each column was studied in detail, and the
others in the row were checked for consistency. Test data were
used to audit some parts of the module, and Excel’s formula
auditing tool was used. Clermont [5] used specially developed
auditing software in a field audit of three large spreadsheets used
by the accounting department of an international firm. The auditor
first discussed each workbook, then spot-checked the spreadsheet
for errors. Finally, the software tool was run, and highlighted cells
were investigated. All irregularities were shown to the developer
and classified as errors if the developer agreed.

The most detailed description of an auditing procedure yet
published comes from HM Customs and Excise, the tax agency in
the United Kingdom [1,2]. This procedure used a software tool
(SpACE) created for government auditing of small-business tax
returns. The process has been documented by HM Customs and
Excise [11]. Because the tax auditors are faced with auditing
thousands of spreadsheets, their first goal was to select a subset of
spreadsheets to audit. Accordingly, the auditor could terminate an
audit under three conditions: if the likelihood of significant errors
was judged to be low, if their impact was judged to be low, or if the
resources required for a full audit were excessive. Under this
procedure, detailed inspection of a spreadsheet was performed on
a small subset of candidates. When a specific spreadsheet was
selected for auditing, the procedure worked as follows: first, the
auditor identified the chain of cells from inputs to output and used
the software to follow the chain of dependent cells so that the key
formulae could be checked. Then the auditor checked copied
formulae for correctness. Finally, 14 types of high-risk cells were
checked for arithmetic and logic.

This procedure was designed for the restricted domain of
auditing small-business tax returns. Thus all the spreadsheets
tested related to the same area of application. In addition, it
assumed that only a subset of incoming spreadsheets could be
tested in detail, so the procedure focused on identifying high-risk
candidates. The goal of the Customs and Excise procedure was
quite different from ours, which was to develop a general-purpose

auditing procedure that could be applied effectively to a
spreadsheet of any size, complexity, and origin. Therefore, our
study differed in several ways from theirs and the others. First, we
used commercially available software; second, we examined a
large number of spreadsheets across many organizations; and
finally, we did not have access to the developers.

2.2. Laboratory audits

Laboratory experiments typically employ spreadsheets into
which a small number of errors have been planted. Galletta et al.
[9] devised an experiment with six simple spreadsheets and
concluded that subjects with accounting expertise found more
errors than others and that subjects with spreadsheet expertise
found errors faster. Galletta et al. [10] studied the effect of
presentation style and found that subjects who had access to the
spreadsheet formulae did not perform better than those who saw
only the resulting numbers. Panko and Sprague [19] examined the
capability of students to find their own errors. The study suggested
that the native ability of developers to correct their own errors may
be limited. Panko [17] studied error-finding by auditors working
individually and in groups and found that groups tended to simply
pool the errors already found by their individual members. Teo and
Lee-Partridge [24] studied the error-finding abilities of student
subjects in spreadsheets with both quantitative and qualitative
errors. Their experiments indicated that mechanical errors were
most easily detected, followed by logic and omission errors.
Qualitative errors, however, proved much more difficult to detect.
Howe and Simkin [12] investigated some demographic factors that
might help explain error-detection ability, but the only general
conclusion that could be drawn from their analysis was that
formula errors were significantly more difficult to detect than
other types. Janvrin and Morrison [13] found that a structured
design approach reduced errors in an experimental setting.

Auditing software has also been tested against spreadsheets
with seeded errors. Davis [8] conducted experiments with students
to determine whether two tools (a flowchart-like diagram and a
data dependency diagram) were useful. His results showed that
both tools were judged to be better than nothing in investigating
cell dependencies, and that the data dependency tool was better
than the built-in Excel tools. Nixon and O’Hara [15] compared the
performance of five auditing tools in finding seeded errors. The
most successful identified over 80% of them. The mechanisms that
were most helpful provided a visual understanding of the schema
or overall pattern of the spreadsheet, and those that searched for
potential error cells. A major limitation of this study was that the
tools were tested by the researcher, who knew the location of the
errors. Chan et al. [3] built four software tools for visualizing
precedent/dependent relationships in a spreadsheet. They did not
test these tools experimentally but suggested different ways in
which they could be used. Kruck [14] developed three aids for
building accurate spreadsheets.

How transferable are these results from the laboratory to the real
world? Operational spreadsheets are usually larger and more
complex, and built by subject-area experts to be used over an
extended period of time. Also, errors in operational spreadsheets are
not known to auditors and the user environment is different from a
laboratory. Spreadsheet developers are likely to be more experi-
enced both in the use of spreadsheets and the area of expertise, more
motivated, more closely monitored, etc. Spreadsheets used in
organizations may improve over time as errors are found.

Our review of the literature [20] identified several shortcomings
in both field audits and laboratorystudies. Few studies have reported
how the audits were carried out, they have not tested different
approaches to compare their effectiveness, and they have not
reported details of the spreadsheet sample, such as size, complexity,
or application area. Laboratory studies are confined to simple
spreadsheets and the results may not be transferable to practice in
the field. A number of important questions therefore remain:
� A
re spreadsheet auditing tools effective?

� A
re particular functions or types of formulae prone to errors?

� W
hat sequence of steps is most effective in identifying errors?

� H
ow common are errors?

� A
re particular auditing tools especially effective in identifying

certain types of errors?

3. Research design

Our auditing protocol was designed to satisfy five criteria:
(1) in
tended for completed, operational spreadsheets;

(2) u
sable by any moderately experienced users;

(3) a
pplicable to spreadsheets of any size and complexity;

(4) s
uited to spreadsheets from any area of application;

(5) u
sable without access to the spreadsheet developer.



Table 1
XL Analyst report

Factors suggesting a high risk of an error

Circular references

Cells displaying a number but storing text

Mixed formulae and values

Formulae evaluating to an error

VLOOKUPS expecting an ordered list

HLOOKUPS expecting an ordered list

Factors suggesting a significant risk of an error

Links to external workbooks

Presence of very hidden sheets

Hidden rows or columns

‘‘=+’’ construct

Conditional formatting

Use of pivot tables

Factors suggesting complex logical modelling

Array formulae

Nested IF statement

Use of SUMIF

Use of database functions (DSUM, etc.)

Use of INDIRECT

Measures

Longest formula

Most complex formula

Total number of formulae

Total number of unique formulae

Workbook size

Number of worksheets

Total all lines of VBA code

Largest formula result

System messages

Protected worksheets

Protected workbook structure

Other
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3.1. Spreadsheet sample

Our auditing protocol was tested on more than 100 operational
spreadsheets during its development. In the initial stages, we
audited a small number of spreadsheets and debriefed the auditors
to learn what parts worked and what did not. We thus revised the
protocol many times.

Some of our test spreadsheets were drawn from organizations,
such as consulting companies, a bank, a college, a state government
agency, and a large energy firm; others were gathered via the web. In
all cases, they were completed spreadsheets that had been in use for
some time. While our sample was not random, it contained a wide
variety from a general population. The sample included spread-
sheets created by both novice and expert developers and that
spanned the range from small and simple to large and complex.

3.2. Auditor training

Our spreadsheet auditors were current undergraduate or
graduate students in business or engineering or recent alumni
of these programs. All had had several years experience with Excel,
usually in a business setting. None was a professional programmer
or spreadsheet developer.

Novice auditors first studied the protocol, which described the
stages of an audit and the data to be gathered. Then each was given
two or three spreadsheets to audit. Their workbooks were then
reviewed by the authors for adherence to the auditing protocol and
for quality of the audit. On average, auditor training took 10 h.

3.3. Auditing software

Our protocol used two software tools: XL Analyst (http://
www.xlanalyst.co.uk/) and Spreadsheet Professional (http://
www.spreadsheetinnovations.com/). These were selected from a
list of about 50 tools compiled by Roger Grinde of the University of
New Hampshire.

XL Analyst is an Excel add-in that evaluates 28 aspects of a
spreadsheet, from ‘‘Formulas evaluating to an error’’ to ‘‘Use of
SUMIF.’’ A description of the XL Analyst report is given in Table 1. We
selected this analyzer for its simplicity: it runs a single-pass analysis
of a workbook and creates a summary. It also offers numerical
estimates of the workbook size and complexity. Finally, it provides
an Overall Risk Rating based on a weighted average of the measured
factors. One limitation of this tool was that it provided only a flag
when a risk condition was met and the address of the single cell
involved, but it did not report how many cells met it or their locations.

Spreadsheet Professional is a collection of tools for building,
testing, analyzing, and using spreadsheets. In our auditing protocol
we made use of two of its features: maps and calculation tests. The
mapping tool created a coded version of each worksheet. Each non-
blank cell was coded as a label, a number, or a formula. It also showed
which formulae had been copied from an original formula. A sample
mapisshownin Fig.1.The calculationtesttoolcheckedtheworkbook
for the 25 conditions given in Table 2. For each of these categories it
reported the number of cells involved and their addresses.

We selected it from among several competing products, all of
which appeared to be mature and offered a rich suite of tools. An
advantage to us was that Spreadsheet Professional was an add-in to
Excel rather than stand-alone.

3.4. Auditing protocol

The auditing protocol involved the following eleven steps (the
complete protocol is available at http://mba.tuck.dartmouth.edu/
spreadsheet/index.html):
1. R
un the two software tools.

2. T
ransfer selected results from the software tools to a data

record sheet.

3. R
ecord the purpose of the workbook and each worksheet.

4. E
xamine workbook for use of Excel functions.

5. R
eview the results of XL Analyst and use them to locate errors.

6. R
eview the Spreadsheet Professional maps and use them to

locate errors.

7. R
eview the Spreadsheet Professional calculation tests and use

them to locate errors.

8. R
eview all formulae not already reviewed for errors.

9. C
onduct various sensitivity analyses to uncover errors.
10. R
ate the workbook on various aspects of spreadsheet design
(e.g., use of modules).
11. R
ecord the total time taken by the audit and record comments
on special situations encountered.
This sequence of steps evolved during months of development.
We initially focused on the chain of cells used to calculate the
output, as suggested by the H.M. Customs and Excise procedure.
However, in many cases we encountered hundreds of outputs but
could identify no single logical chain. We therefore developed a
layered approach, in which we used the auditing tools to gain an
understanding of the physical and logical layout of the spreadsheet
and to identify high-risk cells, and only later did we examine
individual formulae.

During our protocol design we trained auditors and tested the
protocol ourselves on dozens of operational spreadsheets. Many
changes were made to the protocol over this time period. We had
initially thought that performance testing (finding the effect of
different inputs on outputs) would be effective in locating errors

http://www.xlanalyst.co.uk/
http://www.xlanalyst.co.uk/
http://www.spreadsheetinnovations.com/
http://www.spreadsheetinnovations.com/
http://mba.tuck.dartmouth.edu/spreadsheet/index.html
http://mba.tuck.dartmouth.edu/spreadsheet/index.html


Fig. 1. Sample map report from Spreadsheet Professional.
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and that this should be conducted early in an audit. We based this
on our own experience on spreadsheets primarily developed for
decision making. However, we found that performance testing was
often either ineffective or impossible; in many operational
spreadsheets it is difficult to distinguish inputs and outputs from
other numbers. Ultimately, we found it to be relatively ineffective
in locating errors in our sample.

We also found that certain options in the use of the auditing
software could make a significant difference in our results. For
example, Spreadsheet Professional allowed the user to choose one of
three alternative definitions of a unique (i.e., uncopied) formula.
One alternative recognized copying across rows, a second
recognized copying down columns, and the third recognized both
types of copying. This choice had a major influence on the number
of cells flagged as potential errors, although not on the number of
errors found. Some auditors preferred to work with large numbers
of potentially problematic cells highlighted by these tests; others
preferred combing through fewer false positives. In the end we
decided which would be most effective across all spreadsheets and
auditors and incorporated that choice in the final protocol.
3.5. Data collection

All information collected during our audits was recorded in a
standard format on a single worksheet. After recording the name
and purpose of the workbook, the auditor recorded the name of
each worksheet along with all those sheets that were linked to
it.

Numerical information produced by XL Analyst was then
captured. This included:
� O
verall risk rating.

� L
ongest formula (characters).

� M
ost complex formula (operations).

� T
otal number of formulae.

� T
otal number of unique formulae.

� P
ercent unique formulae.

� W
orkbook size.

� N
umber of worksheets.

� V
BA Code (line/components).

� L
argest formula result.



Table 2
Calculation tests in Spreadsheet Professional

1. Unused input values

2. Unused calculations

3. No precedents

4. Dependents rule

5. Blank cells references

6. Errors referenced

7. Non-numeric cell referenced

8. Forward row reference

9. Forward column reference

10. Hidden cell referenced

11. Range name

12. Duplicate range names

13. External references

14. IF function

15. Double IF function

16. NPV function

17. VLOOKUP function

18. HLOOKUP function

19. LOOKUP function

20. Numeric rule: numbers in formula

21. Complex calculation

22. Unprotected calculation

23. Lotus evaluation rules

24. Worksheet protection

25. Calculation manual
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Spreadsheet Professional also generated numerical data, but at
the individual worksheet level. This data was captured at the
worksheet level and then summarized for the workbook as a
whole. This included:
� N
umber of numeric inputs.

� N
umber of formulae.

� N
umber of unique formulae.

� P
ercentage of unique formulae.

� N
umber of labels.

Next the auditor examined each worksheet for the use of built-
in functions and recorded the names of the functions by type. The
names were then concatenated in a single cell for further analysis.

Both XL Analyst and Spreadsheet Professional checked individual
cells for a number of conditions that may have indicated errors or
problems. XL Analyst checked for the 17 conditions shown in
Table 1. XL Analyst reported only the cell address of a single cell that
met a given condition, even if dozens of other cells did so also.
Spreadsheet Professional also checked for potential errors using the
25 calculation tests shown in Table 2. It reported all the cells in
each worksheet that satisfied any of the tests. We recorded the cell
addresses of flagged cells and calculated the total number of cells
identified.

The auditors next recorded their subjective valuation of the
design qualities of the workbook by rating the following eight
qualities on a 1–5 Likert scale:
� O
verall ease of understanding.

� U
se of modules.

� U
se of parameterization.

� U
se of range names for parameters.

� U
se of range names for formulae.

� E
ase of use.

� E
ase of communication.

� O
verall technical quality.

The auditors then recorded how the workbook was documen-
ted, looking for evidence of six methods:
� M
odel assumptions—explanation of major assumptions behind
the model.

� S
ources for inputs—sources given for numerical inputs.

� G
uide to sheets—overview of the purpose of sheets in workbook.

� C
ell comments—comments in individual cells.

� P
seudocode for formulae with explanation for them, such as ‘‘IF

(Demand > Supply, Supply, Demand)’’.

� N
otes in cells—text in cells explaining formulae or assumptions.

Next the auditors looked for evidence that the following
security tools were used:
� P
rotected cells.

� H
idden cells.

� D
ata validation.

We then collected data on errors, defining six categories of
errors:
� L
ogic—formula uses incorrect logic.

� R
eference—formula refers to wrong cell(s).

� H
ard-coding—number(s) appear in formula.

� C
opy/Paste—formula error due to misuse of copy/paste.

� D
ata input—wrong input data.

� O
mission—factor omitted from formula.

We recorded errors by instance, not by cell. An instance of an
error represents a single conceptual error, which may be repeated
in other cells. For example, if a SUM formula in cell D46 points to
the wrong input range, we would classify it as a Reference error. If
that same erroneous formula appeared in cells E46:G46, we would
count that as one error instance with four error cells.

For each error instance we recorded the following information:
� c
ell address(es);

� n
umber of cells;

� w
hether identified by numerical tests in XL Analyst or Spreadsheet

Professional;

� ty
pe of error;

� h
ow it was discovered;

� e
xplanatory comments.

4. Quantitative results

Our primary motivation for developing a systematic approach
to auditing was to identify errors. As a side benefit, however, our
audits produced quantitative measures of size, complexity,
function use, and other aspects of our sample spreadsheets. This
information was useful because it allowed us to summarize our
sample with measures that could be compared to other samples of
spreadsheets and allowed us to estimate revealing aspects of
operational spreadsheets such as the percentage of unique
formulae.

4.1. Spreadsheet size and complexity

Table 3 summarizes data on our sample of 50 spreadsheets in 12
dimensions, as measured by XL Analyst and Spreadsheet Profes-

sional. The median number of kilobytes filled by these models was
189, with a range from 28 to 3852.

Perhaps the best single measure of complexity and degree of
effort required to audit a spreadsheet is the number of formulae
involved. The median number of formulae in our sample was 1294,
with a range from 25 to 63,371. The software also measured the



Table 3
Quantitative measures of sample spreadsheets

Measure Median Minimum Maximum

XL Analyst

Longest formula (number of characters) 114 15 711

Most complex formula (operations) 14 3 120

Total number of formulae 1294 25 63,731

Total number of unique formulae 105 9 1,685

Percent of unique formulae (%) 10.0 0.3 56.1

Workbook size (kb) 189 28 3,852

Number of worksheets 5 1 44

Spreadsheet Professional

Number of numeric inputs 562 21 44,470

Number of formulae 1294 25 63,731

Number of unique formulae 193 11 4,081

Percentage of unique formulae (%) 24.7 0.6 97.9

Number of labels 417 42 91,137
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number of unique formulae: this eliminated formulae that were
copied from others. XL Analyst reported a median of 105 unique
formulae, with a range from 9 to 1685. Spreadsheet Professional

reported a median of 193 unique formulae, with a range from 11 to
4081. (Differences in counts of unique formulae are to be expected,
as the algorithms used to detect copying have not been
standardized.) The percentage of unique formulae has a median
of 10.0% (XL Analyst) or 24.7% (Spreadsheet Professional), with
ranges from 0.3% to 56.1% and 0.6% to 97.9%, respectively.

XL Analyst also recorded data on the longest and most complex
formulae in a workbook. The median number of characters in the
longest formula was 114, with a range from 15 to 711. The median
number of operations in the most complex formula was 14, with a
range from 3 to 120.

These results suggested several facts about our sample:

Fig. 3. Frequency of function use by individual function.
� I
ndividual spreadsheets ranged from very small and simple to
very large and complex.

� T
he median spreadsheet size was quite large, whether measured

in terms of worksheets, kilobytes, or number of formulae.

� T
he number of unique formulae was generally a small

percentage of the total number of formulae, indicating a high
incidence of copied formulae.

� L
ong and complex formulae occurred in a large percentage of

spreadsheets.

4.2. Use of functions

Little has been reported about how often functions are used and
which ones are most often used. As part of our protocol we
required the auditors to record the functions used on each sheet in
Fig. 2. Frequency of function use by type.
the workbook. (We did not determine the number of times it was
used.)

Fig. 2 shows the results by type of function and Fig. 3 by
individual function. In total, we identified 65 distinct functions
used in our sample, but only 11 of these appeared in 6 or more
worksheets. The most common function was the SUM function,
appearing at least once in 17.3% of worksheets.

4.3. Errors

In 3 of the 50 spreadsheets audited we did not find any errors of
the types in our auditing protocol. In the remaining 47 we found a
total of 483 instances of errors involving a total of 4855 error cells.
On average, each error instance involved 10.05 cells. The average
cell error rate over all 270,722 formulae audited was 1.79%. For the
47 spreadsheets with errors, the minimum number of error
instances was 1 and the maximum was 65. The median number
was 7, and most spreadsheets had 10 or fewer. The minimum
number of error cells was 1 and the maximum was 1711. The
median was 41, and most spreadsheets had 100 or fewer. Fig. 4
shows how the error instances and error cells were distributed by
error type.

5. How errors were discovered

One of our goals was to determine the auditing procedures that
were most effective in identifying errors. XL Analyst and
Spreadsheet Professional both flagged potentially problematic cells,
and these were systematically investigated by our auditors. In
addition, Spreadsheet Professional provided a mapping tool that



Fig. 4. Errors categorized by type.

Fig. 5. How errors were identified.
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coded each non-blank cell as a label, a number, or a formula. It also
showed which formulae had been copied from an original one.
Some errors stand out in these maps, and our auditors were trained
to examine them. Finally, the protocol required a careful inspection
of all formula cells that had not already been investigated (we refer
to this as code inspection).

Fig. 5 shows how the error instances and error cells were
identified. Some of these results can be attributed to the sequence
in which we used the tools. For example, we would have identified
more errors using code inspection if we had performed code
inspection before auditing. However, as a result of our experience
we believed that starting an audit with a Spreadsheet Professional

map analysis and calculation tests was more effective.
Table 4
Errors by type and how identified

Map analysis SS Pro tests

(A) Error instances

Hard-coding 93 (51.1%) 56 (30.8)

Reference 40 (25.2) 83 (52.2)

Logic 59 (55.7) 24 (22.6)

Copy/paste 11 (64.7) 5 (29.4)

Omission 8 (61.5) 0 (0.0)

Data 3 (50.0) 1 (16.7)

Total 213 (44.1) 166 (34.4)

(B) Error cells

Hard-coding 1440 (68.2%) 382 (18.1%)

Reference 274 (25.5) 640 (59.6)

Logic 1117 (80.4) 51 (3.6)

Copy/paste 197 (95.6) 8 (3.9)

Omission 60 (92.3) 0 (0.0)

Data 7 (70.0) 1 (10.0)

Total 3095 (63.8) 1082 (22.3)
Table 4 categorizes error instances and error cells by type of
error and how they were discovered. These results suggested
several conclusions. First, map analysis was a powerful means for
identifying errors. It was quick and rarely provided false positives.
It worked by revealing the overall structure of a worksheet and by
highlighting cells that broke a pattern. Second, the automated tests
helped to identify a large proportion of the remaining errors, but
the process produced large numbers of false positives. (Fewer
would be generated if some of the 25 tests were shut off.) Third,
code inspection was necessary, but it identified only a small
portion of errors once map analysis and the error tests had been
completed.

6. True and false positives

Auditing software flagged a subset of the formula cells in a
workbook as potential errors. False positives are flagged cells that
are not errors; false negatives are error cells that are not flagged.
High rates of either make auditing software less effective. We
XL Analyst tests Code inspection Total

6 (3.3) 27 (14.8) 182

8 (5.0) 28 (21.7) 159

0 (0.0) 23 (21.7) 106

0 (0.0) 1 (5.9) 17

0 (0.0) 5 (38.5) 13

0 (0.0) 2 (33.3) 6

14 (2.9) 88 (18.2) 483

127 (6.0%) 162 (7.7%) 2111

22 (2.0) 138 (12.8) 1074

0 (0.0) 221 915.9) 1389

0 (0.0) 1 (0.5) 206

0 (0.0) 5 (7.7) 65

0 (0.0) 2 (20.0) 10

149 (3.1) 529 (10.9) 4855
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investigated the false positive and negative rates for the
calculation tests in Spreadsheet Professional. This software flags a
cell when it violates one or more of 25 conditions. Thus one cell can
be flagged several times.

Our sample (50 spreadsheets) involved 270,722 formulae, of
which we classified 4855 as errors. Spreadsheet Professional

generated 62,719 cell flags in all, of which 6276 referred to one
of these error cells. Thus 56,443 flags out of the total of 62,719, or
90%, were false positives. However, error cells were flagged more
than once by this software. The 6276 error cell flags identified
only 1757 different errors, thus an individual error cell had been
flagged an average of 3.6 times. Since Spreadsheet Professional

flagged 1757 out of a total of 4855 error cells, missing 3089 error
cells, the false negative rate was 64%. As one might expect, the
calculation tests were more effective in identifying certain types
of errors. One might therefore ask how likely a certain flagged
cell was to be a certain type of error. For example, Spreadsheet

Professional generated 316 flags for the condition ‘‘Blank cells
referenced.’’ Of these 316 cells, 285 were classified as Reference

errors. Thus a cell flagged for this condition had a 90.2% chance of
being a Reference error. Similarly, a cell flagged for No precedents

had a 67.7% chance of being a Logic error. Finally, a cell flagged
for Numeric rule, Unused calculation, Forward reference, IF

function, or Hidden cell had an 80–90% chance of being a Hard-

coding error.

7. Auditing time

Our protocol was designed to reveal only certain types of errors,
and there was no guarantee that it would find all the errors in any
one spreadsheet. However, we still expected that it would use the
auditor’s time efficiently and that it would not take so much time
as to be impractical.

The average time spent by our auditors on our sample
spreadsheets, including the time spent recording and categorizing
the errors found, was 3.25 h. The range was from 0.8 to 15.3 h. This
seemed to be a reasonable amount of time to devote to auditing a
spreadsheet of importance to an organization.

We speculated that the time taken to audit a spreadsheet
depended on many factors, including its size and complexity
and the domain knowledge and auditing skill of the auditor. In
our sample, the strongest correlation between auditing time and
the various quantitative measures was with the number of
worksheets in the workbook. The median time to audit a single
sheet was 25 min. Fig. 6 shows the distribution of the time
Fig. 6. Distribution o
per sheet for all 50 workbooks. While one workbook
required nearly 300 min per sheet, most required less than
50 min.

8. Recommendations for practice

Our protocol was not intended for use as a day-to-day auditing
process in organizations. However, we learned a great deal about
effective auditing and the design needs of spreadsheets.

First, auditing software is valuable. Spreadsheet Professional

especially was a highly effective tool. Its worksheet maps provided
a quick understanding of the logical design of each sheet and often
pointed to problem cells. The calculation tests, despite a high rate
of false positives and negatives, also pointed to many errors.
Learning to use such a tool took time and experimentation, but was
effective. Second, our auditing experience reinforced our belief that
a logical spreadsheet design was critical to avoiding errors. Many of
the spreadsheets we audited were astonishingly complex, and
were not designed to reduce complexity or make understanding
easy. Complexity was a major source of errors. Third, we gained
insight into problems needing attention by a spreadsheet auditor:
complex formulae are risky; similarly, functions such as IF,
VLOOKUP, and NPV were often misused and should be audited
carefully. We even found that simple formulae often referred to
blank cells or to the wrong cells. Some of these errors were
identified by the auditing software while others can be found by
code inspection.

9. Summary

We developed a general-purpose auditing procedure for
operational spreadsheets and tested it on 50 completed spread-
sheets taken from a wide variety of sources. Our auditing protocol
used two commercially available software tools to improve the
speed and effectiveness of the process.

Using the procedure, we documented the size and complexity
of a large sample of spreadsheets. We determined the frequency
with which built-in functions were used and found errors in about
1.8% of all formula cells.

The auditing software generated a high percentage of false
positives and false negatives. However, we believe that auditing
software is far more effective in identifying errors than unassisted
code inspection.

While we found that operational spreadsheets were often
extremely complex, we also found that an effective audit could be
f auditing time.
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conducted in 5–10 h. This could be reduced if the auditor was
knowledgeable in the problem domain or had access to the
spreadsheet developer. We observed that auditors developed skills
that allowed them to understand the formal structure of a complex
spreadsheet. They also developed a sense of where errors were
likely to occur. Organizations could benefit from training auditing
specialists and providing auditing services to spreadsheet devel-
opers.
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