An Auditing Protocol for Spreadsheet Models

Stephen G. Powell, Kenneth R. Baker, and Barry Lawson

Tuck School of Business

Dartmouth College

Hanover NH 03755 USA
November 27, 2007
Abstract
It is widely accepted that errors are prevalent in spreadsheets and that they can be extremely difficult to find. A number of audits of existing spreadsheets have been reported in the literature but few details have been given about how those audits were performed. We report here on the development and testing of a new spreadsheet auditing protocol designed to find errors in operational spreadsheets. Our research provides insight into which auditing procedures, used in what sequence and combination, are most effective across a wide range of spreadsheets. It also provides useful information on the size and complexity of operational spreadsheets, as well as the frequency with which certain errors occur.
Keywords: spreadsheets, spreadsheet errors, end-user computing, auditing, auditing software.

Acknowledgement

This work was performed under the sponsorship of the U.S. Department of Commerce, National Institute of Standards and Technology. Reproduction of this article, with the customary credit to the source, is permitted.

Corresponding author: Stephen G. Powell, Tuck School of Business, Dartmouth College, Hanover, NH 03755. Telephone: 603-646-2844; fax: 603-646-1308; email: sgp@dartmouth.edu.

1. Introduction

Errors are a major problem in traditional software programming and effective methods have been developed to find and correct them [24]. Analogous methods are rarely used for spreadsheet models. This could be because the typical spreadsheet developer is not aware of the prevalence of errors or not aware of effective testing procedures. In fact, according to a recent survey [22], fewer than 10% of Excel experts use auditing software. An earlier study [4] showed that spreadsheet users generally do not use common features such as built-in auditing tools.

Practitioners have recommended many different approaches to testing a spreadsheet for errors: using extreme inputs, reviewing each formula, sensitivity testing, and so on. Some stress the use of tools, such as auditing software, while others stress the use of people, as in peer review. Although the results of some audits have been published, typically few details have been given as to how the audit was conducted. After 25 years of spreadsheet usage by millions of end users, we cannot begin to say which auditing methods work best for which types of spreadsheets and developers.

As part of a broader research effort on how end-users and their organizations work with spreadsheets, we set out to develop an explicit auditing protocol and test it on a significant number of operational spreadsheets. This paper describes the protocol we have developed and what it reveals about effective auditing procedures. In a companion paper [21] we describe in more detail the errors identified using this protocol.

We begin with a review of the literature on spreadsheet auditing. A broader review and critique of the literature on spreadsheet errors is available in a companion paper [20]. We then describe the design of our research: the target spreadsheets, the auditors, the auditing software, the steps in the protocol, and the data collected. Our quantitative results include multiple descriptors of the sample spreadsheets:

· size and complexity

· use of built-in functions

· frequency of errors by type

· methods for discovering errors

· true and false positive rates for auditing software.

A major focus of the paper is on how we discovered errors, that is, which elements of our protocol are most effective in uncovering which type of errors. A powerful auditing procedure must not only identify a large percentage of errors but it must also do so in as little time as possible. We discuss the time these audits took, relating it to the size and complexity of the workbook and to the number of errors found. Finally, we offer some qualitative observations on the types of errors that can be uncovered using this auditing procedure and on the modifications needed to implement this research protocol in an operational setting.
2. Previous work on spreadsheet audits
Two main approaches characterize research on spreadsheet auditing: field audits and laboratory experiments. Field audits involve testing spreadsheets that are operational in organizations. In this type of research, the auditor does not know in advance how many errors there are in a given spreadsheet or where they are located. In some cases the auditor has access to the spreadsheet developer and can ask for clarification about the purpose and design of the spreadsheet, as well as the correctness of individual formulas. In other cases the auditor tests the spreadsheet without access to the developer. Some, but not all, field audits involve use of auditing software.

In a laboratory experiment the researcher creates one or more spreadsheets and seeds them with errors. The task of the subjects in the experiment is to locate these known errors. In some cases the subjects are given specific instructions for conducting their audits; in other cases they are left to their own devices. Auditing software has also been tested against laboratory spreadsheets with known errors.

Much of the published literature on spreadsheet errors and auditing is concerned more with the errors that are found than with the procedures that are used. Although many authors offer advice on how to audit a spreadsheet, no research studies compare alternative auditing approaches for operational spreadsheets. We believe the current study is the first to report on the use of an explicit auditing protocol on operational spreadsheets taken from a variety of sources.

2.1 Field audits

In an analysis of the incidence of errors, Panko [16, 18] cited seven reports on field audits of spreadsheets. The earliest is Davies and Ikin [7], who tested 19 operational spreadsheets from 10 different organizations but provided no details on how the audits were conducted. Cragg and King [6] inspected 20 operational spreadsheets from 10 companies. These spreadsheets ranged from 150 cells to over 10,000 cells. The authors reported that in these audits one person spent an average of two hours on spreadsheet testing, but they offered no additional details about the testing methods. Panko [18] also reported on the audit of a large-scale capital budgeting spreadsheet at NYNEX. In this audit, each of the six main modules of the spreadsheet was audited by a three-person team. The audit began with the developer explaining the logic of the module and its relation to the model as a whole. The team then verified formulas and checked cell references. One cell in each column was studied in detail, and the others in the same row were checked for consistency. Test data were used to audit some portions of the module. Finally, Excel’s formula auditing tool was used.

By far the most detailed description of a field auditing procedure in use comes from HM Customs and Excise, the tax agency in the United Kingdom [1, 2]. This procedure involves the use of a software tool (SpACE) created for government auditing of small-business tax returns. This auditing procedure has been documented in HM Customs and Excise [11], which is the only available published auditing protocol. Because the tax auditors are faced with thousands of spreadsheets to audit, the first goal of this procedure is to select a subset of all spreadsheets to audit. Accordingly, the procedure involves a series of stages, at any one of which the auditor can terminate the audit. The audit may be terminated if the likelihood of significant errors is judged to be low, or if the impact of errors is judged to be low, or if the resources required for a full audit are too high, and so on. Under this procedure, detailed inspection of a spreadsheet is performed on a small subset of all candidate spreadsheets.

When a specific spreadsheet has been selected for auditing, the Customs and Excise procedure works as follows. First, the auditor identifies the chain of cells from inputs to output and uses the software to follow the chain of dependent cells so that the key formulas can be checked. Then the auditor checks the original formulas that were used to copy related formulas, and checks that the copies are correct. Butler [2] claimed that this procedure saves considerable time while adding only a minimal risk that an error will be overlooked. Finally, fourteen types of high-risk cells are checked for arithmetic and logical correctness. These include, for example, cells that contain constants, have no dependents, or involve complex functions such as NPV (net present value).

The information provided in these reports on the Customs and Excise auditing procedure is uniquely detailed. However, this procedure is intended for a specific use and is not designed as a general-purpose auditing procedure. First, the procedure is designed for use in the restricted domain of government auditing of small-business tax returns. Thus all the spreadsheets tested relate to the same area of application. Second, the procedure is predicated on the assumption that only a subset of incoming spreadsheets can be tested in detail, so the procedure focuses on identifying high-risk candidates. The goal of the Customs and Excise procedure is quite different from ours, which is to develop a general-purpose auditing procedure that can be applied effectively to a spreadsheet of any size, complexity, and origin.

Clermont [5] used specially-developed auditing software in a field audit of three large spreadsheets. The software identifies three types of equivalence classes among cells in a spreadsheet: copy equivalence (formulas are identical), logical equivalence (formulas differ only in constants and absolute references), and structural equivalence (formulas use the same operators in the same order, possibly on different arguments).

In this study three large spreadsheets used by the accounting department of an international firm were audited. The auditor first discussed each workbook with its developer and collected summary data about the workbook (number of cells, number of formulas, and so on). The second step was to spot-check the spreadsheet for errors. Finally, the software tool was run and highlighted cells were investigated. All irregularities were shown to the developer and classified as errors only with the developer’s approval. In three workbooks consisting of 78 worksheets and 60,446 cells, a total of 109 equivalence classes of errors were found, involving 1,832 cells (about 3% of all cells). Of these errors, 24 classes and 241 cells were quantitative errors (0.4% of all cells), with the remainder being qualitative errors. (Quantitative errors affect numerical results while qualitative errors do not.)

This study differs from ours in several ways. First, it uses specially-built software whereas our protocol uses commercially-available software. Second, it focuses on a small number of spreadsheets in one organization whereas ours examines a large number of spreadsheets across many organizations. Finally, the researchers had access to the developers for confirmation of errors whereas ours did not.

2.2 Laboratory audits

The second major line of research on spreadsheet auditing involves laboratory experiments. These typically employ simple spreadsheets in which the researcher has planted a small number of errors. Galletta et al. [9] devised an experiment with six simple accounting spreadsheets and concluded that subjects with accounting expertise found more errors than others and that subjects with spreadsheet expertise found errors faster than others. Galletta et al. [10] studied the effect of presentation style and found that subjects who had access to the spreadsheet formulas did not perform better than those who saw only the numbers. Panko and Sprague [19] examined the capability of students to find their own errors. The study suggested that the native ability of spreadsheet developers to correct their own errors may be severely limited. Panko [17] studied error-finding by auditors working individually and in groups and found that groups tended to simply pool the errors already found individually by their members. Teo and Lee-Partridge [24] studied the error-finding abilities of student subjects in spreadsheets with both quantitative and qualitative errors. Their experiments indicated that mechanical errors are most easily detected, followed by logic and omission errors. Qualitative errors, however, proved much more difficult for students to detect. Howe and Simkin [12] investigated some demographic factors that might help explain error-detection ability, but the only general conclusion that could be drawn from their statistical analysis was that formula errors are significantly more difficult to detect than other types. Janvrin and Morrison [13] found that a structured design approach reduced errors in an experimental setting.

Auditing software has also been tested against spreadsheets with seeded errors. Davis [8] conducted experiments with students to determine whether two tools (a flowchart-like diagram and a data dependency diagram) were useful. His results show that both tools were judged by their subjects to be better than nothing in investigating cell dependencies, and the data dependency tool was judged to be better in debugging than the built-in Excel tools. Nixon and O’Hara [15] compared the performance of five auditing tools in finding seeded errors. The most successful tools were found to help in identifying over 80% of errors. The mechanisms that seemed most helpful to users were those that provided a visual understanding of the schema, or overall pattern, of the spreadsheet, and those that searched for potential error cells. One limitation of this study was that the tools were tested by the researcher, who also knew the location of the errors in the spreadsheet. Chan, Ying, and Peh [3] built four software tools for visualizing precedent/dependent relationships in a spreadsheet. Although they did not test these tools experimentally, they did suggest different ways in which these tools could be used in auditing.

The question that hangs over all laboratory research is how transferable the results are from the laboratory to the real world of spreadsheet use. Operational spreadsheets are different in many ways from laboratory spreadsheets. They are usually bigger and more complex, they are built by subject-area experts, and they are used over an extended period of time. Perhaps most important, errors in operational spreadsheets are not known to auditors. Likewise, the environment in organizations that use spreadsheets is different from the laboratory environment. Spreadsheet developers are likely to be older than laboratory subjects, more experienced both in spreadsheets and in their areas of expertise, more motivated, more closely monitored, and so on. Spreadsheets used in organizations also may improve over time, if errors are found during use.

Another shortcoming of the existing laboratory experiments is that, in most studies, subjects were simply told to “look for bugs” without more detailed instruction. Thus little is known about which methods of training and which auditing procedures work best. One important exception is Kruck [14], in which subjects were given explicit guidelines for building and auditing spreadsheets, and the results showed that the guidelines produced an improvement in performance.

* * *

Our review of the literature on spreadsheet auditing identifies several shortcomings and suggests areas for additional research. Although a number of field audit studies have been reported, most of these have not reported on how the audits were actually carried out. The main exception is the work of Butler, but his work is specialized to the auditing of small business tax returns in the UK. The field audit studies have not tested different approaches to auditing or compared the effectiveness of multiple types of auditing software. In addition, they have not generally reported details of the spreadsheets in their sample, such as size, complexity, or application area. Thus it is difficult to know the extent to which field audits have tested representative spreadsheets.

The existing literature suggests that most operational spreadsheets contain errors and that errors are difficult to find, even in small-scale laboratory spreadsheets. However, a number of important questions remain. For example:

· Are spreadsheet auditing tools effective?

· Are particular functions or types of formulas prone to errors?

· What sequence of steps is most effective in identifying errors?

· How common are errors?

· Are particular auditing tools especially effective in identifying certain types of errors?

These are some of the questions we address in this paper.

3. Research design

The ultimate goal of developing effective auditing procedures is to improve the practice of spreadsheet modeling in organizations. However, research on auditing procedures differs from the practice of auditing in some fundamental ways. First, we devote more effort to achieving consistency among our auditors than a practitioner would. Second, we record more data than a practitioner would. Third, we audit spreadsheets from many areas of application, about which our auditors have no particular knowledge, whereas practitioners typically audit spreadsheets from a domain in which they are knowledgeable.

Our research approach is further defined by five principles. The first is that our protocol will be used on completed, operational spreadsheets. Thus we do not analyze the practice of actually building spreadsheets, nor do we study laboratory spreadsheets. Second, our protocol can be used by any moderately-experienced Excel user; we do not presume any special expertise in our auditors. Third, our protocol applies to spreadsheets of any size and complexity. Fourth, our protocol is suited to spreadsheets from any area of application. Finally, our protocol does not rely on access to the spreadsheet developer. Thus our approach develops an understanding of the purpose and design of a spreadsheet strictly by examining the spreadsheet itself.

This last assumption is necessary for our research purposes but is one important way in which our research protocol differs from how a typical practitioner would audit a spreadsheet. In most practical situations the auditor interacts with the spreadsheet developer, initially to understand the purpose and design of the spreadsheet and eventually to communicate problem areas to the developer. This interaction accelerates the process of understanding the spreadsheet. It also allows the auditor to check specific formulas with the developer. In such an audit, a balance must be struck between too little interaction between developer and auditor, which could make the auditor’s job more difficult and error-prone, and too much contact, which could reduce the auditor’s independence and ability to find problems. For research purposes we have completely isolated our auditors from the developers of the spreadsheets.

3.1 Spreadsheet sample

Our auditing protocol has been tested on more than 100 operational spreadsheets over the course of its development. In the initial stages of development we audited a small number of spreadsheets and debriefed our auditors to learn what worked and what didn’t. We revised the protocol many times on the basis of this experience. We report below on some of the major conclusions we drew from this experience.

Our test spreadsheets were drawn from a wide variety of operational domains. Some were gathered during site visits to organizations including several consulting companies, a bank, a college, a state government agency, and a large energy firm. Others were gathered over the web. In all cases, our sample spreadsheets were completed spreadsheets that had been in use for some time. We excluded some very small spreadsheets and some that contained only data and no formulas. We also excluded extremely large and complex spreadsheets and those containing VBA macros.

While our sample is not strictly random, it contains a wide variety of spreadsheets from the general population of operational spreadsheets. The sample includes spreadsheets from many different types of organizations, spreadsheets created by both novice and expert developers, and spreadsheets that span the range from small and simple to large and complex.

3.2 Auditor training

Our spreadsheet auditors were current undergraduate or graduate students in business or engineering or recent alumni of these programs. All had several years experience with Excel, usually in a business setting. None were professional programmers or professional spreadsheet developers.

Novice auditors first studied the auditing protocol, which describes in detail the stages an audit goes through and the data to be gathered at each stage. Then each auditor was given two or three spreadsheets to audit. The audited workbooks were then reviewed by the researchers for adherence to the auditing protocol and for the quality of the audit. On average, auditor training took 10 hours.

3.3 Auditing software

Our auditing protocol uses two software tools: XL Analyst (http://www.xlanalyst.co.uk/) and Spreadsheet Professional (http://www.spreadsheetinnovations.com/). These tools were selected from a list of over 50 supplied by Roger Grinde of the University of New Hampshire.

XL Analyst is an Excel add-in that evaluates 28 aspects of a spreadsheet, from “Formulas evaluating to an error” to “Use of SUMIF.” A complete description of the XL Analyst report is given in Table 1.

We selected XL Analyst in part for its simplicity: it runs a single-pass analysis of a workbook and creates a summary worksheet. It also offers numerical estimates of the size and complexity of a workbook. Finally, it provides an Overall Risk Rating based on a weighted average of the measured factors, which the developer suggests relates in part to the difficulty of auditing a workbook. One limitation of this tool is that it provides only a flag when a risk condition is met and the address of a single cell involved, but it does not report how many cells meet it or their locations.

Spreadsheet Professional is a collection of tools for building, testing, analyzing, and using spreadsheets. In our auditing protocol we made use of two features of this tool: maps and calculation tests. The mapping tool creates a coded version of each worksheet in a workbook. Each non-blank cell is coded as a label, a number, or a formula. It also shows which formulas have been copied from an original formula. A sample map is shown in Figure 1. The calculation test tool checks a workbook for the 25 conditions listed in Table 2. For each of these categories it reports the number of cells involved and their cell addresses.

We selected Spreadsheet Professional from among 3 or 4 competing products, all of which appeared to be mature products offering a rich suite of tools. This particular tool had some advantages for our research; for example, it is an add-in to Excel rather than stand-alone software. However, by using it we do not intend to endorse it or to imply that it is superior to similar tools.

3.4 Auditing Protocol

The auditing protocol itself involves the following eleven steps (the complete protocol is available at http://mba.tuck.dartmouth.edu/spreadsheet/index.html):

1. Run the two software tools.

2. Transfer selected results from the software tools to a data record sheet.

3. Record the purpose of the workbook and each worksheet.

4. Examine workbook for use of Excel functions.

5. Review the results of XL Analyst and use them to locate errors.

6. Review the Spreadsheet Professional maps and use them to locate errors.

7. Review the Spreadsheet Professional calculation tests and use them to locate errors.

8. Review all formulas not already reviewed for errors.

9. Conduct various sensitivity analyses to uncover errors.

10. Rate the workbook on various aspects of spreadsheet design (e.g., use of modules).

11. Record the total time taken by the audit and record comments on special situations encountered.
This particular sequence of steps evolved during months of development. The existing literature gave us some clues for designing an auditing protocol. For example, in the procedure described in H.M. Customs and Excise [11], the chain of cells used to calculate the output was identified and the auditing protocol focused on this chain. We found in our sample of spreadsheets that this approach did not work as well because dozens or even hundreds of outputs were calculated and no single logical chain could be traced. We therefore developed a layered approach, in which we used the auditing tools to first gain an understanding of the physical and logical layout of the spreadsheet and to identify high-risk cells, and only later did we examine formulas one by one.

During the design of our protocol we trained auditors and tested the protocol ourselves and through our assistants on dozens of operational spreadsheets. Too many changes were made to the protocol over this time period to report here, but we will give two examples.

We had initially thought that performance testing (testing the effects of different inputs on the outputs) would be effective in locating errors and that it should be conducted early in an audit. This belief was based on our experience with testing our own spreadsheets, which are primarily used for decision making. However, in testing operational spreadsheets from the field we found that performance testing was often either ineffective or impossible. One reason is that in many operational spreadsheets it is difficult to distinguish inputs and outputs from other numbers. As a result we moved this step to a later phase in the protocol. Ultimately, we found it to be relatively ineffective in locating errors in our sample of spreadsheets.

We also found that certain options in the use of the auditing software could make a significant difference in our results. For example, Spreadsheet Professional allows the user to choose one of three alternative definitions of a unique (i.e., uncopied) formula. One alternative recognizes copying across rows, a second copying down columns, and the third recognizes both types of copying. This choice had a major influence on the number of cells flagged as potential errors, although not on the number of errors found. Some auditors preferred to work with large numbers of potentially problematic cells highlighted by these tests; others preferred combing through fewer false positives. In the end we made a judgment as to which would be most effective over all spreadsheets and all auditors and incorporated that choice into the final protocol.

3.5 Data collection

All of the information collected during our audits was recorded in a standard format on a single worksheet. After recording the name and purpose of the workbook, the auditor recorded the name of each worksheet along with all the sheets that are linked to a given worksheet.

Numerical information about the workbook as a whole produced by XL Analyst was captured next. This included

· Overall risk rating

· Longest formula (characters)

· Most complex formula (operations)

· Total number of formulas

· Total number of unique formulas

· Percent unique formulas

· Workbook size

· Number of worksheets

· VBA Code (line/components)

· Largest formula result

Spreadsheet Professional also generates numerical data, but at the individual worksheet level. This data was captured at the worksheet level and then summarized for the workbook as a whole. This information included:

· Number of numeric inputs

· Number of formulas

· Number of unique formulas

· Percentage of unique formulas

· Number of labels

Next the auditor examined each worksheet for the use of built-in functions and recorded the names of those functions by type. The names were then concatenated in a single cell for further analysis.
Both XL Analyst and Spreadsheet Professional check individual cells for a number of conditions that may indicate errors or problems. XL Analyst checks for the 17 conditions listed in Table 1 (from “Circular references” to “Use of INDIRECT”). XL Analyst reports only the cell address of a single cell that meets a given condition, even if dozens of other cells do so as well. Spreadsheet Professional also checks for potential errors using the 25 calculation tests shown in Table 2. Unlike XL Analyst, Spreadsheet Professional reports all the cells in each worksheet that satisfy any of these tests. We recorded the cell addresses of flagged cells and calculated the total number of cells identified in each test.

The auditors next recorded their subjective valuation of the design qualities of the workbook. They did this by rating the following eight qualities on a 1-5 scale:

· Overall ease of understanding

· Use of modules

· Use of parameterization

· Use of range names for parameters

· Use of range names for formulas

· Ease of use

· Ease of communication

· Overall technical quality.

The auditors then recorded how the workbook was documented. They looked for evidence of six methods:

· Model assumptions - explanation of major assumptions behind model

· Sources for inputs – sources given for numerical inputs

· Guide to sheets – overview of the purpose of sheets in workbook

· Cell comments – comments in individual cells

· Pseudocode for formulas – explanation for formulas such as “IF(Demand>Supply, Supply, Demand)”

· Notes in cells – text in cells explaining formulas or assumptions.

Next the auditors looked for evidence that the following security tools were used:

· Protected cells

· Hidden cells

· Data validation.

We next collected data on errors. We defined six categories of errors:

· Logic errors – formula uses incorrect logic

· Reference errors – formula refers to wrong cell(s)

· Hard-coding errors– number(s) appear in formula

· Copy/Paste errors – formula error due to misuse of copy/paste
· Data input errors – wrong input data

· Omission errors – factor omitted from formula.

(More detail on our error categories and on the errors we identified in 50 operational spreadsheets can be found in [21].)

We recorded errors by instance, not by cell. An instance of an error represents a single conceptual error, which may be repeated in many cells. For example, if a SUM formula in cell D46 points to the wrong input range, we would classify it as a Reference error. If that same erroneous formula appeared in cells E46:G46, we would count that as one error instance and 4 error cells.

For each error instance we recorded the following information:

· cell address(es)

· number of cells

· whether identified by numerical tests in XL Analyst or Spreadsheet Professional
· type of error

· how it was discovered

· explanatory comments.

4. Quantitative results
Our primary motivation for developing a systematic approach to auditing was to identify errors. As a side benefit, however, our audits produced quantitative measures of size, complexity, function use, and other aspects of our sample spreadsheets. This information is useful in several ways. First, it allows us to summarize our sample with measures that can be compared to other samples of spreadsheets. Second, it allows us to estimate revealing aspects of operational spreadsheets such as the percentage of unique formulas.

4.1 Spreadsheet size and complexity
Table 3 summarizes our sample of 50 spreadsheets on 12 dimensions measured by XL Analyst and Spreadsheet Professional. We report the median value over all spreadsheets, as well as the minimum and maximum. The median number of worksheets used in these workbooks was 5, with a minimum of 1 and a maximum of 44. The median number of kilobytes (kb) occupied by these models was 189, with a range from 28 to 3,852.

Perhaps the best single measure of the complexity and amount of effort required to audit a spreadsheet is the number of formulas involved. The median number of formulas in our sample was 1,294, with a range from 25 to 63,371. The software also measures the number of unique formulas, which eliminates formulas that are copied from other formulas. XL Analyst reports a median of 105 unique formulas, with a range from 9 to 1,685. Spreadsheet Professional reports a median of 193 unique formulas, with a range from 11 to 4,081. (Differences in counts of unique formulas are to be expected, as the algorithms used to detect copying are not standardized.) The percentage of unique formulas has a median of 10.0% (XL Analyst) or 24.7% (Spreadsheet Professional), with ranges from 0.3% to 56.1% and 0.6% to 97.9% respectively.

XL Analyst also records data on the longest and most complex formulas in a workbook. The median number of characters in the longest formula is 114, with a range from 15 to 711. The median number of operations in the most complex formula is 14, with a range from 3 to 120.
These results suggest several generalizations about our sample spreadsheets:

· Individual spreadsheets range from very small and simple to very large and complex.

· The median spreadsheet is quite large, whether measured in terms of worksheets, kilobytes, or number of formulas.

· The number of unique formulas is a generally a small percentage of the total number of formulas, indicating a high incidence of copied formulas.

· Long and complex formulas occur in a large percentage of spreadsheets.

4.2 Use of functions

Built-in functions are one reason spreadsheets are so effective for end-user modeling. Little is known, however, about how often functions are used and which ones are used most often. As part of our protocol we required the auditors to record the functions that were used on each sheet in the workbook. (We did not record the number of times a given function was used, simply that it was used at least once.)

The results are summarized in Figure 3 by type of function and in Figure 4 by individual function. The first of these figures shows that Math functions were the most common, appearing in 31.0 percent of the worksheets audited. Next most common were Statistical functions (19.2 %) and Logic functions (18.8%).

Figure 4 shows how common individual functions are in our sample. In total, we identified 65 distinct functions used in our sample workbooks, but only 11 of these appeared in six or more worksheets. The most common function was the SUM function, appearing at least once in 17.3 percent of worksheets. Next most common were the IF function (14.0%), the MAX function (5.4%), the ROUND function (4.8%), and the AVERAGE function (4.1 %).

4.3 Errors

In 3 of the 50 spreadsheets we audited we were unable to find any errors of the types included in our auditing protocol. In the remaining 47 spreadsheets we found a total of 483 instances of errors involving a total of 4,855 error cells. On average, each error instance involved 10.05 cells. The average cell error rate over all 270,722 formulas audited was 1.79%. Over all 47 spreadsheets with errors, the minimum number of error instances was 1 and the maximum was 65. The median number of error instances was 7, and most spreadsheets in our sample had 10 or fewer error instances. The minimum number of error cells was 1 and the maximum was 1,711. The median number of error cells was 41, and most spreadsheets had 100 or fewer error cells.

Figure 5 shows how the error instances and error cells were distributed by error type. Hard-coding errors were the most common (37.7% of instances and 43.5% of cells), followed by Reference errors (32.9% of instances and 22.1% of cells) and Logic errors (21.9% of instances and 28.6% of cells). The remaining three categories, Copy/Paste, Omission, and Data Input errors, together accounted for less than 5% of instances and cells. (More details on errors in this sample of spreadsheets can be found in Powell et al. [21]).

5. How errors were discovered
One of the important goals of our research was to determine the auditing procedures that were most effective in identifying errors. XLAnalyst and Spreadsheet Professional both flag potentially problematic cells, and these cells were systematically investigated by our auditors. In addition, Spreadsheet Professional provides a mapping tool that codes each non-blank cell as a label, a number, or a formula. It also shows which formulas have been copied from an original formula. Some errors stand out in these maps, and our auditors were trained to examine these cells. Finally, the protocol required a careful inspection of all formula cells that had not already been investigated (we refer to this as code inspection). Thus errors could be identified in four ways:

· Spreadsheet Professional map analysis

· Spreadsheet Professional calculation tests

· XLAnalyst calculation tests

· code inspection

Figure 6 shows how the error instances and error cells were identified. Spreadsheet Professional map analysis uncovered 214 error instances (44.3%) and 3,095 error cells (63.7%). The numerical tests in Spreadsheet Professional led to 169 error instances (35.0%) and 1,082 error cells (22.3%). Code inspection led to 86 error instances (17.8%) and 529 error cells (10.9%). Finally, the numerical tests in XLAnalyst led to 14 error instances (2.9%) and 149 error cells (3.1%).

Some of these results can be attributed to the sequence in which we used the tools in our protocol. For example, we would have identified more errors using code inspection if we had performed code inspection before using the auditing. However, as a result of our extensive experience we believe that starting an audit with a Spreadsheet Professional map analysis and calculation tests is more effective than starting with code inspection.
Table 4 categorizes error instances and error cells by type of error and how they were discovered. Map analysis uncovered the majority of error instances and error cells for all types. For example, among Hard-coding error instances, 51.1% were identified using map analysis; 68.2% of hard-coded cells were discovered this way. This is also true of Logic errors and Copy/Paste errors. The exception is Reference errors, where only 25.2% of these errors were discovered with map analysis and 52.2% by Spreadsheet Professional tests. The same pattern holds for Reference error cells: 59.6% were discovered by Spreadsheet Professional tests and only 25.5% by map analysis.

These results suggest several conclusions. First, map analysis is a powerful means for identifying errors. It is quick and rarely provides false positives. It works by revealing the overall structure of a worksheet and by highlighting cells that break a pattern. Second, the automated tests in Spreadsheet Professional help to identify a large proportion of the remaining errors, but the process produces large numbers of false positives. (Fewer false positives could be generated if some of the 25 tests in this tool were shut off.) Third, code inspection is necessary but it identifies only a small portion of errors once map analysis and the error tests have been completed.

6. True and false positives
Auditing software flags a subset of the formula cells in a workbook as potential errors. False positives are flags that refer to cells that are not errors; false negatives are error cells that are not flagged. High rates of either false positives or false negatives make auditing software less effective. We investigate here the false positive and negative rates for the calculation tests in Spreadsheet Professional. Recall that Spreadsheet Professional flags any cell that violates one or more of 25 conditions (see Table 2). Thus one cell can be flagged multiple times.

Our sample of 50 spreadsheets involved 270,722 formulas, of which we classified 4,855 as errors. Spreadsheet Professional generated 62,719 cell flags in all, of which 6,276 referred to one of these error cells. Thus 56,443 flags out of the total of 62,719, or 90%, were false positives.

However, error cells were flagged more than once by Spreadsheet Professional. The 6,276 error cell flags identified only 1,757 different errors, so an individual error cell was flagged on average 3.6 times.

Since Spreadsheet Professional flagged 1,757 out of a total of 4,855 error cells, missing 3,089 error cells, the false negative rate was 64%.

As one might expect, the calculation tests in Spreadsheet Professional are more effective in identifying certain types of errors than others. One might therefore ask how likely a certain flagged cell is to be a certain type of error. For example, Spreadsheet Professional generated 316 flags for the condition “Blank cells referenced.” Of these 316 cells, 285 were classified as Reference errors. Thus a cell flagged for this condition has a 90.2% chance of being a Reference error. Similarly, a cell flagged for “No precedents” has a 67.7% chance of being a Logic error. Finally, a cell flagged for “Numeric rule,” “Unused calculation,” “Forward reference,” “IF function,” or “Hidden cell” has an 80 to 90% chance of being a Hard-coding error.
7. Auditing time

An ideal auditing protocol would find all the errors in a spreadsheet and require minimal time to do it. Our protocol is designed to reveal only certain types of errors, and there is no guarantee that it will find all the errors in any one spreadsheet. However, we still should expect that it will use the auditor’s time efficiently and that it will not take so much time as to be impractical.

The average time spent by our auditors on our sample spreadsheets, including the time spent recording and categorizing the errors they found, was 3.25 hours. The range was from a minimum of 0.8 to a maximum of 15.3 hours. This would appear to be a reasonable amount of time to devote to auditing a spreadsheet of some importance to an organization. Furthermore, an auditor would be unlikely to devote as much effort to documenting results in a corporate setting as was required for our research.

We can speculate that the time it takes to audit a spreadsheet depends on many factors, including the size and complexity of the spreadsheet as well as the domain knowledge and auditing skill of the auditor. In our sample of 50 spreadsheets the strongest correlation between auditing time and the various quantitative measures we had at hand was with the number of worksheets in the workbook. The median time to audit a single sheet was 25 minutes. Figure 2 shows the distribution of the time per sheet for all 50 workbooks in our sample. While one workbook required nearly 300 minutes per sheet, most required less than 50 minutes per sheet.

8. Recommendations for practice

As we stated previously, our research protocol is not intended for use as a practical day-to-day auditing process in organizations. However, we have learned a great deal about how day-to-day auditing might be done effectively, and how spreadsheets should be designed.

First, it is clear that auditing software is well worth using. Spreadsheet Professional especially was a highly effective tool in our audits. The worksheet maps provide a quick understanding of the logical design of each sheet and often point to problematic cells. The calculation tests, despite a high rate of false positives and negatives, also point to many errors. Learning to use this tool effectively takes time and experimentation, but we recommend use of this or equivalent software.

Second, our auditing experience reinforces our belief that a logical spreadsheet design is critical to avoiding errors. It is also very helpful when auditing a spreadsheet. Many of the spreadsheets we audited were astonishingly complex, and were not designed to reduce complexity or to make understanding easy. Our impression is that complexity is a major source of errors.

Third, we have gained some insights into where in a spreadsheet an auditor should concentrate attention. Complex formulas are highly risky, for example. Similarly, functions such as IF, VLOOKUP, and NPV are often misused and therefore should be audited carefully. We have also found that even simple formulas often refer to blank cells or to the wrong cells. Some of these reference errors are identified by the auditing software. Others can be found by careful code inspection.

9. Summary

In this research we have developed a general purpose auditing procedure for operational spreadsheets and tested it on 50 completed spreadsheets taken from a wide variety of sources. Our auditing protocol uses two commercially available software tools to improve the speed and effectiveness of the process.

Through this auditing procedure we have documented the size and complexity of a large sample of spreadsheets. We have also determined the frequency with which built-in functions are used. Finally, we have identified errors in about 1.8% of all formula cells.

The auditing software we used generates a high percentage of false positives and false negatives. In other words, a large number of cells are identified as problematic but do not contain errors, and a large number of actual errors are not flagged by the software. However, we believe that auditing software in the hands of a capable auditor is far more effective in identifying errors than unassisted code inspection.

While we have found that operational spreadsheets are often extremely complex, we have also found that an effective audit can be conducted in 5-10 hours. This time could be reduced if the auditor were knowledgeable in the problem domain or had access to the spreadsheet developer, neither of which characterized our experiment. We observed that with experience, auditors develop skills that allow them to quickly understand the formal structure of a complex spreadsheet. They also develop a sense of where errors are most likely to occur. This suggests that organizations could benefit from training auditing specialists and through them providing auditing services to other spreadsheet developers.

* * *

Research on auditing methods for spreadsheets is in its infancy. Ours is the first report on an auditing protocol for operational spreadsheets that is general enough to be used in all application areas. Many productive avenues exist for further research. Some areas we think would be particularly interesting include:

· Testing the effectiveness of different types of auditing software

· Developing a structured approach to auditing spreadsheets in tandem with the spreadsheet developer

· Identifying design qualities in spreadsheets that reduce the difficulty of auditing and decrease the incidence of errors

· Studying the impacts of errors on decision quality and developing auditing methods that identify high-impact errors.

References
[1] R. Butler. 2000a. "Is This Spreadsheet a Tax Evader?" Proceedings of the 33rd Hawaii International Conference on System Sciences, pp. 1-6.

[2] R. Butler. 2000b. "Risk Assessment for Spreadsheet Developments: Choosing Which Models to Audit." H. M. Customs and Excise, UK.

[3] H. C. Chan, C. Ying and C. Peh. 2000. “Strategies and Visualization Tools for Enhancing User Auditing of Spreadsheet Models.” Information and Software Technology, Vol. 42, pp. 1037-1043.

[4] Y. E. Chan and V. Storey. 1996. “The Use of Spreadsheets in Organizations: Determinants and Consequences.” Information and Management Vol. 31, pp. 199-134.

[5] M. Clermont. 2002. "A Spreadsheet Auditing Tool Evaluated in an Industrial Context." Proceedings of the European Spreadsheet Risks Interest Group Annual Conference, Cardiff, Wales, pp. 35-46.

[6] P. Cragg and M. King. 1993. "Spreadsheet Modelling Abuse: An Opportunity for OR?" Journal of Operational Research Society, Vol. 44:8, pp. 743-752.

[7] N. Davies and C. Ikin. 1987. "Auditing Spreadsheets." Australian Accountant, Vol. 57:11, pp. 54-56.

[8] J. Davis. 1996. “Tools for Spreadsheet Auditing.” International Journal of Human-Computer Studies. Vol. 45. pp. 429-442.
[9] F. Galletta, D. Abraham, M. El Louadi, W. Leske, Y. Pollalis, and J. Sampler. 1993. “An Empirical Study of Spreadsheet Error-Finding Performance.” Accounting, Management & Information Technology, Vol. 3:2. pp. 79-95.

[10] F. Galletta, K. Hartzel, S. Johnson, J. Joseph, and S. Rustagi. 1997. "Spreadsheet Presentation and Error Detection: An Experimental Study." Journal of Management Information Systems, Vol. 13:3, pp. 45-63.

[11] H. M. Customs and Excise Computer Audit Service. 2001. “Methodology for the Audit of Spreadsheet Models.”
[12] H. Howe and M. Simkin. 2006. “Factors Affecting the Ability to Detect Spreadsheet Errors.” Decision Sciences Journal of Innovative Education. Vol. 4:1, pp. 101-122.
[13] D. Janvrin and J. Morrison. 2000. “Using a Structured Design Approach to Reduce Risks in End-User Spreadsheet Development.” Information and Management Vol. 37, pp. 1-12.

[14] S. Kruck. 2006. “Testing Spreadsheet Accuracy Theory.” Information and Software Technology, Vol. 48, pp. 204-213.

[15] D. Nixon and M. O’Hara. 2001. “Spreadsheet Auditing Software.” Proceedings of the European Spreadsheet Risks Interest Group Annual Conference, Amsterdam, Netherlands.
[16] R. Panko. 1998. "What We Know About Spreadsheet Errors." Journal of End-User Computing. Vol. 10, pp. 15-21.

[17] R. Panko. 1999. “Applying Code Inspection to Spreadsheet Testing.” Journal of Management Information Systems. Vol. 16:2, pp. 159-176.

[18] R. Panko. 2005. “What We Know About Spreadsheet Errors.” http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm, accessed September 2, 2006.
[19] R. Panko and R. Sprague. 1998. “Hitting the Wall: Errors in Developing and Code Inspecting a “Simple” Spreadsheet Model.” Decision Support Systems. Vol. 22, pp. 337-353.

[20] S. Powell, K. Baker, and B. Lawson. 2006a. “A Critique of the Literature on Spreadsheet Errors,” Spreadsheet Engineering Research Project working paper.
[21] S. Powell, K. Baker, and B. Lawson. 2006b. “Errors in Operational Spreadsheets,” Spreadsheet Engineering Research Project working paper.
[22] S. Powell, K. Baker, and B. Lawson. 2006c. “Spreadsheet Experience and Expertise,” Spreadsheet Engineering Research Project working paper.
[23] K. Sommerville. 2004. Software Engineering. 7th Edition, Addison Wesley.

[24] T. Teo and J. Lee-Partridge. 2001. "Effects of Error Factors and Prior Incremental Practice on Spreadsheet Error Detection: An Experimental Study." Omega - The International Journal of Management Science, Vol. 29, pp. 445-456.

Table 1
XL Analyst Report
Factors suggesting a high risk of an error

Circular references

Cells displaying a number but storing text

Mixed formulas and values

Formulas evaluating to an error

VLOOKUPS expecting an ordered list

HLOOKUPS expecting an ordered list

Factors suggesting a significant risk of an error

Links to external workbooks

Presence of very hidden sheets

Hidden rows or columns

“=+” construct

Conditional formatting

Use of Pivot Tables

Factors suggesting complex logical modelling

Array formulas

Nested IF statement

Use of SUMIF

Use of database functions (DSUM, etc.)

Use of INDIRECT

Measures

Longest formula

Most complex formula

Total number of formulas

Total number of unique formulas

Workbook size

Number of worksheets

Total all lines of VBA code

Largest formula result

System messages

Protected worksheets

Protected workbook structure

Other

Table 2
Calculation Tests in Spreadsheet Professional

1. Unused input values

2. Unused calculations

3. No precedents

4. Dependents rule

5. Blank cells references

6. Errors referenced

7. Non-numeric cell referenced

8. Forward row reference

9. Forward column reference

10. Hidden cell referenced

11. Range name

12. Duplicate range names

13. External references

14. IF function

15. Double IF function

16. NPV function

17. VLOOKUP function

18. HLOOKUP function

19. LOOKUP function

20. Numeric rule: numbers in formula

21. Complex calculation

22. Unprotected calculation

23. Lotus evaluation rules

24. Worksheet protection

25. Calculation manual

Table 3
Quantitative measures of sample spreadsheets
Measure

Median
Minimum
Maximum

XL Analyst

Longest formula (number of characters)
114

15

711

Most complex formula (operations)

14

3

120

Total number of formulas

1,294

25

63,731

Total number of unique formulas

105

9

1,685

Percent of unique formulas

10.0%

0.3%

56.1%

Workbook size (kb)

189

28

3,852

Number of worksheets

5

1

44

Spreadsheet Professional

Number of numeric inputs

562

21

44,470

Number of formulas

1,294

25

63,731

Number of unique formulas

193

11

4,081

Percentage of unique formulas

24.7%

0.6%

97.9%

Number of labels

417

42

91,137

[image: image1.wmf]Table 4

Errors by Type and How Identified

A. Error Instances

Map Analysis

SS Pro

 tests

XL Analyst

 tests

Code inspection

Total

Hard-Coding

93 (51.1%)

56 (30.8)

6 (3.3)

27 (14.8)

182

Reference

40 (25.2)

83 (52.2)

8 (5.0)

28 (21.7)

159

Logic

59 (55.7)

24 (22.6)

0 (0.0)

23 (21.7)

106

Copy/Paste

11 (64.7)

5 (29.4)

0 (0.0)

1 (5.9)

17

Omission

8 (61.5)

0 (0.0)

0 (0.0)

5 (38.5)

13

Data

3 (50.0)

1 (16.7)

0 (0.0)

2 (33.3)

6

Total

213 (44.1)

166 (34.4)

14 (2.9)

88 (18.2)

483

B. Error Cells

Map Analysis

SS Pro

 tests

XL Analyst

 tests

Code inspection

Total

Hard-Coding

1,440 (68.2%)

382 (18.1%)

127 (6.0%)

162 (7.7%)

2,111

Reference

274 (25.5)

640 (59.6)

22 (2.0)

138 (12.8)

1,074

Logic

1,117 (80.4)

51 (3.6)

0 (0.0)

221 915.9)

1,389

Copy/Paste

197 (95.6)

8 (3.9)

0 (0.0)

1 (0.5)

206

Omission

60 (92.3)

0 (0.0)

0 (0.0)

5 (7.7)

65

Data

7 (70.0)

1 (10.0)

0 (0.0)

2 (20.0)

10

Total

3,095 (63.8)

1,082 (22.3)

149 (3.1)

529 (10.9)

4,855

Figure 1

Sample Map Report from Spreadsheet Professional
[image: image2.emf]40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

A B C D E F G H I J K L M N O P Q R S T U V

L L F F < < < < < < < < < < < < < < < < < <

L L N N N N N N N N N N N N N N

L L F < < < < < < < < < < < < < < < < < < <

L L N N

L L F < < < < < < < < < < < < < < < < < < <

L L N N N N N N N N N N N

L L F < < < < < < < < < < < < < < < < < < <

L L N N

L

L N

L N

L N

L N

L N

L N

L N

L L

L L L L L L L L

F F N N N N N N

F F N N N N N N

^ ^ N N N N N N

^ ^ N N N N N N

^ ^

^ ^

^ ^

^ ^

^ ^ N N N N N N

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^

Figure 2

Distribution of Auditing Time
[image: image3.emf]0

5

10

15

20

25

30

0-25 26-50 51-75 76-100 101-125 126-150 151-175 176-200 201-225 226-250 251-275

Time per sheet (minutes)

Number of Spreadsheets

Figure 3

Frequency of Function Use by Type
[image: image4.emf]0.7%

2.6%

4.1%

7.0%

8.1%

8.5%

18.8%

19.2%

31.0%

0% 5% 10% 15% 20% 25% 30% 35%

Database

Information

Text

Date and Time

Financial

Lookup and Reference

Logical

Statistical

Math

Figure 4

Frequency of Function Use by Individual Function
[image: image5.emf]0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.5

1.5

1.5

1.8

1.8

1.8

2.2

2.2

2.2

3.0

3.0

3.7

4.1

4.8

5.4

14.0

17.3

0.0 5.0 10.0 15.0 20.0

VDB

RATE

MONTH

MATCH

INT

HLOOKUP

EXACT

EOMONTH

YEAR

TEXT

SUMIF

STDEV

POWER

PMT

INDIRECT

DATE

COUNT

CONCATENATE

CHOOSE

OFFSET

ISERROR

COUNTIF

SUMPRODUCT

NOW

IRR

ROUNDUP

OR

AND

VLOOKUP

NPV

MIN

AVERAGE

ROUNDUP

MAX

IF

SUM

Figure 5

Errors Categorized by Type

[image: image6.emf]1.2%

2.7%

3.4%

21.9%

32.9%

37.7%

0.0% 5.0% 10.0%15.0% 20.0% 25.0%30.0% 35.0%40.0%

Data Input

Omission

Copy/Paste

Logic

Reference

Hard-coding

Error Instances

[image: image7.emf]0.20%

1.30%

4.20%

28.60%

22.10%

43.50%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Data Input

Omission

Copy/Paste

Logic

Reference

Hard-coding

Error Cells

Figure 6

How Errors were Identified

[image: image8.emf]2.9%

17.8%

35.0%

44.3%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%

XL Analyst tests

Code inspection

SS Pro tests

Map analysis

Error Instances

[image: image9.emf]3.1%

10.9%

22.3%

63.7%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%

XL Analyst tests

Code inspection

SS Pro tests

Map analysis

Error Cells

PAGE
44

