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Abstract 

 

Based on theoretical arguments and empirical evidence we advocate the 

use of the lognormal distribution as a model for activity times. However, 

raw data on activity times are often subject to rounding and to the 

Parkinson effect. We address those factors in our statistical tests by using 

a generalized version of the Parkinson distribution with random censoring 

of earliness, ultimately validating our model with field data from several 

sources. We also confirm that project activities exhibit stochastic 

dependence that can be modeled by linear association. 
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Modeling Activity Times by the Parkinson Distribution with a 

Lognormal Core: Theory and Validation 
 

1. Introduction 

 Most published work on stochastic scheduling falls into one of two broad 

categories: (1) machine scheduling models and (2) project scheduling models. A key 

component of such models is a probability distribution for processing times or activity 

durations. Machine scheduling models tend to rely on the exponential distribution or the 

normal distribution. The exponential distribution often yields elegant results in problems 

that cannot be solved analytically for generic distributions (e.g., Bruno et al. 1981, Ku & 

Niu 1986). The normal distribution is consistent with assuming that processing times are 

sums of numerous independent components of uncertainty so that the central limit 

theorem applies (e.g., Soroush & Fredendall 1994). Project scheduling models, since the 

seminal work of Malcolm et al. (1959), have mostly relied on the beta distribution 

because of its flexibility and a claim that it is easy to estimate (Clark, 1962).  

 In this paper, we advocate the use of the lognormal distribution as a model for 

processing times and activity durations. We enumerate the various theoretical properties 

that support the use of the lognormal for both machine scheduling and project scheduling 

models, although our primary concern lies with the latter. 

 For the most part, the choice of a probability distribution for machine scheduling 

or project scheduling seems to be driven by convenience rather than empirical evidence. 

Efforts to validate assumptions about processing time distributions are scarce. For 

example, we have found no evidence in the literature that the beta distribution has ever 

been validated. Some progress has been made with data on surgery times (May et al. 

2000, Strum et al. 2000), showing that the lognormal distribution provides the best fit by 

far. However, machine scheduling models have rarely considered the lognormal 

distribution (an exception being Robb and Silver, 1993). In this paper, we validate the use 

of the lognormal distribution as a model for activity times in several independent datasets 

obtained from project scheduling applications. By contrast, the beta distribution and the 

exponential distribution would fail in most of these cases.  

 Two practical issues arise in attempts to validate a particular probability 

distribution. One factor is the ―Parkinson effect,‖ which is especially relevant in project 

scheduling: reported activity times may violate lognormality because earliness is hidden, 

not because the lognormal is a poor model. In other words, activities may finish earlier 

than estimated, or earlier than a given deadline, but there may be no incentive to report 

any outcome other than finishing on time. In such cases, the reported data contain a bias 

that obscures the underlying distribution. A second factor is that empirical data may be 

collected on a coarse time scale, leading to rounding of the actual times. However, 

rounding may cause false rejection of lognormality in standard tests, such as Shapiro-

Wilk (Royston 1993). These problems may explain why the lognormal has not been 

widely adopted for machine scheduling applications as well as project applications. In 

our validations, we recognize the Parkinson effect and the consequences of rounding. We 

introduce a new version of the Parkinson distribution that helps diagnose whether the 

effect is present and makes possible accounting for it in simulation. In addition, we use 

statistical tests that account for the presence of ties occurring on a coarse time scale. 
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 The vast majority of papers in both machine scheduling and project scheduling also 

rely on the assumption of statistical independence, but that is a very strong assumption. 

One serendipitous feature of the lognormal distribution is that it lends itself to use when 

statistical dependence is modeled by linear association (Baker & Trietsch 2009a). In this 

paper, we also validate the linear association model for representing dependencies in 

empirical data, ultimately justifying linearly-associated lognormal processing times with 

different means but the same coefficient of variation. 

 Our results are relevant to both practitioners and theoreticians. The relevance to 

practitioners is direct: they can implement easier, more reliable stochastic estimates by 

our approach. The relevance to theoreticians is by informing stochastic scheduling 

models, such as the stochastic resource constrained project scheduling (SRCPS), which 

has attracted increasing attention over the last decade. Historically, SRCPS focused on 

minimizing the expected makespan under the earliest start policy, but that is not 

considered sufficient today (Demeulemeester and Herroelen 2002). Most contemporary 

SRCPS models start with deterministic sequencing and include timing decisions that 

account for stochastic variation. The purpose is to obtain proactive schedules that hedge 

for variation (Herroelen and Leus 2005). Hedging requires specifying safety time buffers. 

Models that study the tradeoff between minimizing the makespan (by reducing hedging) 

and achieving a stable or predictable schedule (by increasing hedging) are also known as 

robust. In both project and machine shop environments, however, we may expect 

deviations from plan during execution. Reactive scheduling models address the correct 

response (Aytug et al., 2005). The purpose of hedging is to reduce the expected cost 

during the reactive stage.  

 Some proactive models do not require explicit distributional information, opting 

instead to allocate some arbitrary amount of safety time to the schedule in some 

predefined configuration. A practical heuristic for the allocation of safety time in projects 

is proposed by Pittman (1994). Goldratt (1997) promotes Pittman's heuristic (and other 

ingredients developed by Pittman) as the basis of Critical Chain scheduling. This 

heuristic is perhaps the best known approach to setting safety time buffers that does not 

require distributions. However, there is no field evidence that Critical Chain provides 

sufficient protection—our own data suggests it does not, because it lacks calibration. 

Emphatically, it is impossible to test such models without distributions. One of our 

empirical results that is important for theoreticians is that such testing must allow for a 

much higher coefficient of variation [cv] than is usually the case in the literature. Trietsch 

(2005) argues against addressing stochastic variation without stochastic analysis. In 

response, Ash and Pittman (2008) combine Pittman's heuristic with standard PERT 

distributions. Trietsch (2006) proposes a proactive timing approach to minimize total 

weighted flowtime costs, which also relies on explicit distributions (and allows stochastic 

dependence). Since the makespan is a flowtime, the model is more general than 

minimizing makespan, and it can also include a tardiness penalty. The model addresses 

the reactive stage cost indirectly, through the flowtime earliness and tardiness cost 

parameters. In contrast to earlier timing models, this approach makes no attempt to set 

explicit safety time buffers but instead sets planned release dates for each activity. Those 

release dates must satisfy a generalized newsvendor model. Bendavid and Golany (2009) 

solve that model by cross entropy. Baker and Trietsch (2009a) demonstrate that it is 

possible to find optimal release dates for any given sequence and any simulated sample in 
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polynomial time. Dablaere et al. (2011) propose a very similar model for setting release 

dates and also use the newsvendor model and simulated samples. A related model 

maximizes net present value instead of minimizing weighted flowtime, and may also be 

addressed by setting release dates and optimizing them for a simulated sample 

(Wiesemann et al. 2010). Conceptually similar stochastic models involve setting due 

dates instead of release dates (e.g., Baker and Trietsch, 2009b).  

 In summary, the models we cite either rely on distributions or use them for testing, 

so identifying correct distributions and showing how to estimate their parameters is 

crucial. The fact that we validated the prevalence of stochastic dependence and the ability 

to model it by linear association is also important for future theoretical research on 

proactive models even if we ignore the Parkinson effect. If we don't ignore it, the 

introduction of the Parkinson distribution is a theoretical contribution of this paper. 

Another theoretical contribution is the introduction of a bootstrap simulation approach 

that facilitates scheduling new projects based on historical data. We also prove that the 

lognormal distribution can be used to represent ratios of actual time to estimated time 

even though they are not independent random variables. 

 Section 2 provides background information from the project scheduling literature 

and discusses published activity distribution models for PERT. Section 3 presents 

theoretical arguments for selecting the lognormal distribution as a model for activity 

time. Section 4 presents empirical support for that choice, based on data from several 

sources, including Trietsch et al. (2010)—which is an unpublished earlier version of this 

paper that we now use mainly for this purpose. In Section 5 we show how to account for 

the Parkinson effect and for ties in the data. Section 6 demonstrates that the stochastic 

dependence we encounter in our datasets can be modeled effectively by linear 

association. Section 7 contains our conclusion.  

 

2. Activity Time Distributions 

 The basic tools used in project scheduling are two overlapping approaches 

introduced in the late 1950's: Critical Path Method (CPM) in Kelley (1961) and Program 

Evaluation and Review Technique (PERT) in Malcolm et al. (1959) and Clark (1962). Of 

the two, only PERT recognizes the probabilistic nature of activity times within a project. 

The deterministic assumption of CPM facilitated the developments of time/cost models 

(crashing) and of sequencing models that become necessary when resources are 

constrained (Demeulemeester and Herroelen, 2002). At the heart of the PERT method is 

a set of assumptions that facilitates a systematic and intuitively-appealing method for 

modeling stochastic behavior in projects. In this paper we address the most basic element 

of PERT: fitting a distribution to each individual activity time. According to Clark 

(1962), the beta distribution has the necessary flexibility, and a good way to estimate its 

parameters is by eliciting three values, an approach we call the triplet method. In 

particular, estimates are elicited for the minimal possible value (denoted min), the mode 

(mode), and the maximal possible value (max). These estimates are then used to define 

the mean, and the standard deviation, , using the formulas 

  

     = (min + 4mode + max) / 6    (1) 

 

     = (max – min) / 6     (2) 
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Equation (2) was selected arbitrarily, to resemble a truncated normal between ±2.96. 

Equation (1) was then derived as an approximation for a beta distribution that matches 

Equation (2) and the estimated min, mode, and max values. Clark (1962) states, "The 

author has no information concerning distributions of activity times, in particular, it is not 

suggested that the beta or any other distribution is appropriate." Furthermore, 

theoretically, with three exceptions—noted by Grubbs (1962) as part of a scathing 

critique of PERT—no beta distribution fits both estimators. Nonetheless, Equations (1) 

and (2) provide good approximations for some beta distribution if mode is within the 

range from min + 0.13(max – min) to min + 0.87(max – min); e.g., see Premachandra 

(2001). This limitation implies cv ≤ 0.66 (approximately). When a beta distribution exists 

that roughly satisfies Equations (1) and (2), we refer to it as a PERT-beta. Typical 

practitioners are not aware of that technical limit on the location of mode relative to min 

and max. However, Equations (1) and (2) imply cv ≤ 1. (Equality would hold only if 

mode = min = 0. In such an extreme case, however, we may safely assume a significant 

error in Equation (1) must ensue.) In practice, we suspect that the triplet method tends to 

yield very low cv values. For instance, in the numerical examples given by Malcolm et 

al., the average cv is 0.19 and the maximum cv is 0.29. Furthermore, observations 

reported by Tversky & Kahneman (1974) suggest that experts asked to provide 98% 

confidence intervals tend to provide very narrow limits that are exceeded in roughly 30% 

of instances. By the same token, we should not trust that the true time will fall between 

the estimates min and max, as PERT assumes. This possibility reinforces the claim that 

the triplet method is likely to lead to small cv estimates and thus perilously discount the 

possibility of large deviations. In addition, Woolsey (1992) provides anecdotal evidence 

that practitioners sometimes consider the requirement to generate the min and max 

estimates onerous, leading to frivolous results.  

 In spite of these contrarian arguments, many authors have suggested technical 

improvements for the fit of the beta to the triplet method. Premachandra (2001) proposes 

such a refinement and offers a thorough discussion of previous contributions on which 

his method improves. Yet another approach is to treat min and max as very high or very 

low percentiles instead of strict minimum and maximum values. These approaches 

attempt to stray as little as possible from the beta assumption while correcting particular 

problems the authors perceive, sometimes at the price of exacerbating problems that the 

authors do not perceive.  

 Other authors, however, suggest alternative distributions. In particular, Kotiah & 

Wallace (1973) propose a doubly-truncated normal distribution (between min and max) 

and Mohan et al. (2007) propose the lognormal distribution based either on the elicited 

parameters min and mode or on mode and max. Hahn (2008) suggests a mixed 

distribution composed of the traditional beta and the uniform distribution. However, his 

approach relies on elicitation of a fourth parameter, which makes it even harder to 

implement.  

 With the notable exception of Grubbs and Woolsey, none of the cited authors 

questions the basic elicitation approach of PERT. All of them interpret min and max 

strictly or as representing very wide confidence limits. Most importantly, none of them 

makes any attempt to validate their models with practical data; instead, they compare 

their results to the prescribed beta. Grubbs (1962) remarks that Equations (1) and (2) rely 
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on an implicit assumption that the elicited estimates are not subject to error, but any 

viable approach must take estimation errors into account. 

 

3. Advantages of the Lognormal Distribution 
 Baker & Trietsch (2009a) present four arguments why the lognormal distribution is 

attractive for modeling stochastic activity times: (1) it is strictly positive, (2) its cv is not 

restricted, (3) it can approximate sums of positive random variables, and (4) it can 

represent the relationship between capacity and activity time. In our present context, we 

add and substantiate a fifth argument: it can also represent the ratio between actual and 

estimated activity time, a feature that greatly facilitates estimation by regression. Among 

the distributions typically employed to model activity times, only the lognormal exhibits 

all these traits. We next elaborate on the last three. 

 The lognormal distribution can represent sums of positive continuous random 

variables (convolutions) because it satisfies the lognormal central limit theorem 

(Mazmanyan et al. 2008; see also Robb 1992): as n grows large, the sum of n 

independent, positive random variables tends to lognormal. This theorem holds subject to 

regularity conditions similar to those that apply to the classical central limit theorem. 

Practitioners often rely on the classical central limit theorem as justification for using the 

normal distribution to model the sum of a small number of random variables, but it may 

produce negative realizations. That is especially true when cv is large, which our data 

show is an important case. Instead, we use the lognormal central limit theorem as a basis 

for approximate convolutions of positive random variables. Numerical experience 

suggests that it is more effective than the normal for small n, too, especially if the 

components’ distributions are skewed to the right, such as Erlang or chi-square. This 

effectiveness may be explained by another good feature of the lognormal distribution: 

Mazmanyan et al. show that any convolution of two or more positive random variables 

must have f(0) = 0, where f denotes the density function, and the lognormal distribution 

satisfies this condition. Among the major distributions that have been suggested for 

activity times and have unconstrained cv, the lognormal distribution is unique in this 

respect.   

 An important special case has components that are lognormal. Let X denote the sum 

of n independent lognormal random variables with parameters mj and sj
2
, for j = 1, …, n. 

(The lognormal random variable is the exponent of a core normal random variable with 

mean mj and variance sj
2
.)  To approximate the distribution of X by a lognormal 

distribution, we first evaluate the components’ means and variances from the following 

formulas: 

 

           μj = exp(mj + sj
2
/2)  and  σj

2
 = μj

2
[exp(sj

2
) − 1] (3) 

 

Next, we add means to obtain μX and add variances to obtain σX
2
. Then we can calculate 

the squared coefficient of variation as cvX
2
 = σX

2
/μX

2
. Finally, we obtain mX and sX from, 

 

 sX
2
 = ln(1 + cvX

2
)   and   mX = lnX – sX

2
/2 (4)  

 

Such calculations are easy to program and should cause no difficulty in practice.  
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 An interesting feature is that both the sum and the product of independent 

lognormal random variables are lognormal: the former approximately and the latter 

analytically. A distribution that has the flexibility to represent both sums and products is 

likely to fit realistic cases that are influenced by both additive and multiplicative 

elements.  

 We say that n positive random variables, Yj, are linearly associated if Yj = BXj where 

{Xj} is a set of n independent positive random variables and B is a positive random 

variable, independent from {Xj}. If we relax the independence assumption in PERT and 

replace it by linear association, the lognormal central limit theorem can still be used. We 

just have to add up the Xj elements before multiplying by the bias term, B. In practice, B 

is likely to be influenced by several additive and multiplicative causes, so it is likely to be 

lognormal by itself. Therefore, if Xj is lognormal, Yj = BXj is also lognormal. 

Furthermore, by Cramér's theorem, if Yj is lognormal then both Xj and B must be 

lognormal. (The theorem states that the sum of two independent random variables cannot 

be normal unless both are normal.) 

 The reciprocal of the lognormal distribution is also lognormal (with the same s). In 

some environments, the activity time is inversely proportional to the effective capacity 

allocated to an activity. If the total work requirement is a constant but the effective 

capacity is lognormal, then the activity time will be lognormal. However, Elmaghraby 

(2005) argues that the total work requirement is random and it is important to address this 

randomness explicitly. He advocates focusing on this source of variation during 

planning—especially in R&D projects. Serendipitously, the ratio of two lognormal 

random variables is also lognormal, so even if the total work requirement is lognormal, 

the ratio of work requirement to capacity—i.e., the activity time—will be lognormal as 

well. Thus, using the lognormal distribution is convenient for such analysis, including 

situations in which crashing is permitted.  

 In our present context, if both activity time and estimate distributions are 

lognormal, the ratios of activity times to estimates are lognormal. In making that 

observation, however, we should recognize that estimates and actual times are positively 

correlated: otherwise, the estimates would be useless. For any two positively correlated 

random variables, assume for the time being that the correlation is due to linear 

association. Linear association between two random variables X and Y implies the 

existence of three positive independent random variables R, S, and B such that X = RB 

and Y = SB. If B is a constant, then X and Y are independent and thus associated (Esary et 

al. 1967). If R and S are constants, then X and Y are proportional to each other and thus 

associated (with a correlation coefficient of 1). It follows that if X and Y are linearly 

associated, then X/Y = R/S (where the numerator and denominator are independent). We 

are mainly interested in instances where the marginal distributions of X and Y are 

lognormal and are positively correlated. Then, because the convolution of two 

independent random variables is normal if and only if both of them are normal (by 

Cramér's theorem), the log-normality of X and Y implies that B, R, S, R/S and X/Y all exist 

and all are lognormal; that is, positively correlated lognormal variates are always linearly 

associated. To see this, take logarithms, so that our statements about ratios and products 

become statements about subtractions and additions. If B is not lognormal, neither X nor 

Y is lognormal. Nonetheless, X/Y = R/S remains lognormal if R and S are lognormal. That 

may apply for residuals in a logarithmic regression model. 
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4. Empirical Validation of Lognormality 

 In this section we present published and unpublished evidence for the validity of the 

lognormal distribution for activity times in practice. Robb & Silver (1993) list some early 

papers that document the validity of the lognormal distribution. May et al. (2000) report 

that the lognormal distribution matches surgery time histograms well, and standard tests 

show that it tends to provide a much better fit than the normal. Although they show that 

judiciously setting a shift parameter improves the fit somewhat, they report that the 

regular (two-parameter) lognormal performs almost as well. (In addition to m and s, a 

shifted lognormal distribution uses a third parameter for the minimum.)  

 The lognormal can replace the beta even where the beta might have worked (but the 

converse is less likely to be true). For instance, Premachandra & Gonzales (1996) show a 

histogram for drilling times based on a sample of almost 650 holes, which we reproduce 

in Figure 1. Although they do not comment on the distribution, we find that a PERT-beta 

with min = 0, mode = 40, and max = 250 would match the true mean and variance well. 

But a lognormal fit, which is depicted in the figure, also works and easily passes a Chi-

square goodness-of-fit test.   

 

 
Figure 1. Drilling Times in Minutes (Premachandra & Gonzales, 1996) 

 

 Often, we need to compare an activity time to its initial estimate. Let pj denote the 

duration of activity j, and let ej be a single point mean estimate that is available for this 

activity. We model pj/ej as lognormal. Equivalently, suppose we log-transform our data, 

including our estimates, and apply linear regression to estimate lnpj by lnej. In that case, 

the residuals are lnpj − lnej = ln(pj/ej). Per our discussion in Section 3, if lnpj and lnej are 

normal (including the case of a constant lnej), then ln(pj/ej) is normal even though we 

assume positive correlation between pj and ej. As a rule, when we wish to estimate the 

parameters of a normal variate, such as ln(pj/ej), the mean and sample variance form a 

sufficient statistic. Nonetheless, if the distribution is indeed normal, then we can also 

estimate the mean and variance by a normal Q-Q chart (also known as a Q-Q plot). To 

obtain such a chart, we sort our sample by increasing order and fit a regression line to the 
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sorted data. A typical equation in such a regression, relating to the activity with the j-

smallest ln(p/e), has the form 

 

    j

j

j

j u
e

p
szm  lnˆˆ      (5) 

 

where uj is the error term and zj is selected in such a way that, under the normality 

assumption of the transformed random variable, the regression line intercept and slope 

are good estimates of m and s. For this purpose, the analytically correct values of zj 

should match the expected values of the normal order statistic (Shapiro & Francia 1972). 

However, a much simpler and yet excellent approximation is obtained by Blom's scores 

(Blom, 1958): set zj = Φ
−1

[(j − 0.375)/(n + 0.25)], which is the z-value for which the 

standard normal distribution cumulative distribution function (cdf), Φ(z), yields a 

probability of (j − 0.375)/(n + 0.25). We adopt this approach because it can be 

generalized for the Parkinson effect and because Looney & Gulledge (1985) 

demonstrated that it can be used as the basis of a statistical normality test similar in 

structure and power to the Shapiro-Francia test (Shapiro & Francia 1972; see also 

Shapiro & Wilk 1965 and Filliben 1975). In this test we compare the Pearson linear 

correlation coefficient between lnpj and lnej, which can be obtained as the square root of 

R
2
 provided by standard regression analysis, to tabulated values based on simulation. 

Table 2 in Looney & Gulledge (1985) provides such values for n ≤ 100 and probabilities 

of 0.5%, 1%, 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 97.5%, 99%, and 99.5%.  

 To demonstrate this procedure, we present an example with high cv (but no 

discernible Parkinson effect). In a software company in New Zealand, programming task 

times were estimated by a manager, and tasks were then allocated to programmers, one at 

a time. Programming times were not recorded, but because each programmer only had 

one task in progress, the total time between start and finish can be used. In reality, 

programmers also had other time-consuming tasks, such as participating in meetings and 

dealing with unscheduled work. Thus, our data exhibits high variance and perhaps we 

should not expect estimates to be very useful in the first place. However, we face similar 

situations frequently in practice. Figure 2 shows a Q-Q chart of ln(pj/ej) for n = 44, 

employing Blom's scores. From the regression equation, we obtain estimates of 0.1171 

and 2.2787 for m and for s. Noting the high slope (almost 2.28), we might be suspicious 

before accepting the result. However, by comparing the square root of R
2
 (0.987) to the 

tabulated values of Looney and Gulledge for the n = 44 case, we find that it is between 

0.985 and 0.989, which mark probabilities of 25% and 50% (for n = 44). Evidently, the 

lognormal can serve as an adequate approximation for this dataset. Furthermore, from the 

regression output, the probability that the slope exceeds 2.0 is 0.999992, which implies a 

very high cv. Thus, the analysis we propose is relevant and plausible for this case. No 

PERT-beta distribution can fit such a high cv. 
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Figure 2. Normal Q-Q Chart of ln(pj/ej) for Programming Time 

 

 

5. The Parkinson Distribution and Correcting for Ties 

 Parkinson’s Law states that "work expands so as to fill the time available for its 

completion" (Parkinson, 1957; emphasis added). The relevance of Parkinson’s Law to 

activity times has been recognized by several authors, including Schonberger (1981) and 

Gutierrez & Kouvelis (1991). The latter develop theoretical models that include a work 

expansion element, as per the law. We suggest that Parkinson's observations can also be 

explained by hidden earliness rather than by explicit expansion; that is, by early work 

misreported as exactly on time. Because estimates are used for both planning and control, 

people in charge of performing activities, when asked for estimates, may have an 

incentive to build some safety time into their estimate. Subsequently, they may hide 

earliness, to protect their future estimates from being mistrusted and reduced. 

Accordingly, our model for the Parkinson effect is based on hidden earliness. 

 Baker & Trietsch (2009a) introduce the (pure) Parkinson distribution, as follows. 

Suppose that work is allotted q units of time, but it really requires X, where X is a random 

variable. In our interpretation of Parkinson's Law, we observe Y, given by 

 

Y = max{q, X} 

 

and we say that Y has a [pure] Parkinson distribution. One particular family of nine 

projects, which we describe in Trietsch et al. (2010), demonstrated a pure Parkinson 

distribution. But in another family of five projects also described there, some early 

activities seemed to be reported correctly whereas a large fraction of early activities were 

reported as precisely on time. For those instances we now introduce a new version of the 
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Parkinson distribution, which provides a statistically valid fit. Let pP denote the 

probability that an early activity is falsely recorded as precisely on time. We assume that 

this probability applies to each early activity independently. That is, early activities are 

recorded correctly with a probability of (1− pP) and precisely on time otherwise; tardy 

activities are always recorded correctly. For pP = 1 we obtain the pure Parkinson 

distribution whereas for pP = 0 we obtain a conventional distribution. Thus the Parkinson 

distribution generalizes all single variate distributions, with or without the Parkinson 

effect. 

 The Parkinson distribution is defined for any internal random variable, X, but as a 

default we cast the lognormal in that role. Figure 3 depicts a normal Q-Q chart of ln(pj/ej) 

data from a construction project in Yerevan, Armenia. The left side of the figure depicts 

the raw data, consisting of 107 points, of which 20 are strictly positive and 38 are zeros 

(indicating pj = ej). The right side is corrected for the Parkinson effect by removing the 38 

"on-time" points and modifying the regression equations (5). Because a proportion pP is 

censored, for early activities we replace n in the calculation of zj by n(1 − pP); that is, zj = 

Φ
−1

[(j − 0.375)/(n(1 − pP) + 0.25)]. In our example we estimate pP = 38/(107 − 20) = 

0.437, and n(1− pP) = 60.26. An alternative is to ignore early points altogether. This 

alternative gives more weight to tardy points and thus estimates the right side of the 

distribution more closely (at the expense of the overall fit). That approach may 

sometimes be justified because the reverse transformation eventually magnifies errors in 

tardiness estimates and shrinks earliness errors.  

 

 
Figure 3. Q-Q Chart of ln(pj/ej) in a Construction Project Showing the Parkinson 

Effect (left) and the Fit of the Parkinson Distribution (right) 
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strictly early points as a censored sample with the right tail removed. The justification is 

that a random sample from a random sample is a (smaller) random sample. Using the 

same reasoning, yet another option is to randomly remove a proportion of about pP of the 

strictly tardy points: if the Parkinson distribution applies, the result would be a trimmed 

but complete sample of n(1 − pP) points in which early and tardy points are 

approximately represented in the correct proportion. In our case, that would require 

trimming 20 × 0.436 ≈ 9 strictly tardy points, leaving a trimmed sample of 60 points. 

Figure 4 depicts two Q-Q charts that can be obtained this way: of the 20 strictly tardy 

points, two appear in both trimmed samples and the other 18 are divided into two groups 

of 9 points, each of which appears in only one sample. The differences between the two 

sides of the figure are visible in the upper right corner, where tardy activities are 

depicted. Taking the square roots of the R
2
 values we obtain 0.9826 and 0.9851. From 

Table 2 in Looney & Gulledge (1985), p-values of 5%, 10% and 25% are 0.980, 0.984 

and 0.988 (for n  = 60). Thus we see that the trimmed sample on the left of the figure has 

a p-value between 5% and 10%. The trimmed sample on the right has a p-value over 

10%. Accordingly, the normality assumption cannot be rejected at the 5% level but is 

marginal at the 10% level. 

 

 
Figure 4. Q-Q Charts of ln(pj/ej) for Two Trimmed Samples 

 

 We observe strong grouping (ties) in both parts of Figure 4, especially for ln(pj/ej) 

= −0.69. These ties are due to rounding; e.g., when the estimate is 2 time units then all 

cases where the reported time is rounded to 1 belong to this group. Apparently, the 

weakness of the normality evidence is due to this grouping. Strum et al. (2000) discuss a 

similar problem that often led to false rejections in their operating time data. Royston 

(1993) proposes a remedy by averaging out Blom's scores of all tied points in each group 

(before calculating zj). Similarly, we can average out the pre-calculated zj values in each 

group. Figure 5 shows the results of the latter approach for the trimmed samples of Figure 

4. The squared roots of R
2
 increase to 0.9936 and 0.9947, and these values are associated 

with much more respectable p-values of about 75% (the entries for n = 60 in Table 2 of 

Looney & Gulledge for 50%, 75% and 90% are 0.992, 0.994 and 0.9956 whereas our 

results straddle 0.994). Royston (1993) points out that his remedy may slightly reduce the 
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power of the test to detect non-normality, but the alternative is a gross increase of false 

rejections. In our case, considering that the samples pass even without the correction, it is 

highly plausible that the underlying activity times are indeed lognormal. By the same 

token, our interpretation of the Parkinson effect as hidden earliness cannot be rejected. 

Qualitatively similar results obtain for the family of five projects: three out of five pass 

the test, at least marginally, even without any remedy; one passes with either one of the 

remedies; one, with the highest pP, cannot pass without the Parkinson correction; all pass 

with high p-values when both remedies are employed. The sorted s estimates for the five 

cases are 0.565, 0.708, 0.725, 0.797 and 0.801, corresponding to cv values of 0.613, 

0.806, 0.831, 0.944 and 0.948. Of these, only one could have been conceivably fitted by a 

PERT-beta distribution. We note specifically that those projects are eclectic, including 

community organizing, productivity skills training, agricultural infrastructure 

development and software programming. The projects relied on subcontractors, so the 

reported processing times may include queueing outside the project manager's direct 

control. However, subcontracting is very common in practice. For instance, the Polaris 

project, on which PERT was initially tested, relied on subcontracting. 

 

 
 

Figure 5. Resolving Ties by Using Average z-scores 

 

6. Modeling Dependence by Linear Association 
 Although we have already demonstrated cases where the PERT-beta could not 

model cv appropriately, in our datasets we only have single-point mean estimates, rather 

than PERT-triplets. Hence, we cannot test the validity of the beta assumption directly. 

But we can test PERT's model for project durations. For that purpose, PERT uses the 

normal distribution as a model for critical path duration, based on an assumption that the 

duration can be approximated by a sum of numerous independent random variables. We 

can invoke the lognormal central limit theorem instead, but if there are many activities in 

the critical path, the difference is small. More importantly, it is well known that this 

approximation ignores the Jensen gap: the tendency of project duration exceed that 

critical path mean due to Jensen's inequality. Clark (1961) presents an approximate 
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calculation for the true project completion distribution, and thus accounts for the Jensen 

gap. Malcolm et al. (1959) noted the problem but chose not to incorporate Clark’s 

approximation in the interests of simplicity. Since then, several authors have revisited the 

issue (e.g., Klingel 1966, Schonberger 1981). However, the Jensen gap may have been a 

red herring. The independence assumption and the lack of calibration—that is, not using 

historical performance data to remove consistent optimistic or pessimistic estimation 

bias—are much more likely to cause problems. Calibration also corrects for the average 

Parkinson effect (which acts as optimistic bias). To show that, we study the properties of 

sums of actual activity times; that is, we effectively assume we are dealing with serial 

projects whose duration is the sum of all activities. Serial projects do not have Jensen 

gaps, so any problems with PERT for such projects must be directly attributable to its 

lack of calibration and the independence assumption. 

 In the following subsections we first analyze the family of five projects. We show 

that PERT estimates are poor, mostly due to underestimating variance. That 

underestimation is directly attributable to the ubiquitous statistical independence 

assumption. We then show that if we use linear association to model statistical 

dependence, the results are much more plausible. Next we analyze the family of nine 

projects and demonstrate that it is imperative to account for consistent bias. Fortuitously, 

our linear association model already accounts for such bias and the difference is dramatic. 

Finally, we show that a dataset studied by Hill et al. (2000) can also be explained by our 

model.  

 Ideally, for the type of analysis we pursue, we need data from many projects with 

many activities, and we need estimates and realizations for all activities. As a rule, 

activity estimates should be comparable, with the ratio between longest and shortest not 

exceeding 4 or 5 (Shtub et al. 2005). Otherwise, the variance of the long activities 

dominates, and it is impossible to analyze the others. In practice, we can use hierarchy to 

avoid violating this rule, but we cannot do that for historical datasets. In the five-project 

family, we originally had 185 activities but discarded 25 long activities. That still leaves a 

sample of 160 activities, but we note that five is a too small number of projects. The nine-

project family is actually smaller: it comprises only 54 activities and 18 of those are 

precisely on time. The Hill dataset is relatively large, but it does not include subtask 

times. Thus, none of our datasets is ideal. Nonetheless, our main claims are supported 

with very high statistical significance. Our technical approach to the five and nine-project 

cases is different from the one taken in Trietsch et al. (2010), but the qualitative results 

are the same. Specifically, we need to simulate project performance so we can construct 

empirical distributions. In Trietsch et al. (2010), we first used analysis of the type we 

demonstrated above to estimate parameters such as mk, sk and Parkinson propensities for 

project k, and then used those parameters to simulate similar projects. Here we introduce 

a bootstrap approach for that purpose. The parametric bootstrap re-sampling approach is 

often used to estimate such parameters when datasets are small. However, a 

nonparametric bootstrap exists that does away with the need to estimate parameters, and 

that is the one we choose (Johnston & Dinardo 1997). 

 

6.1. Estimating Variance 

 To implement the nonparametric bootstrap to our data, we rely on the observation 

that the ratios pj/ej are lognormal and thus we should work with ratios or equivalently 
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with their logarithms. We resample the ratio between actual and estimated times. To 

simulate a new activity time we multiply a re-sampled ratio by the new estimate. For 

instance, suppose we have historical data for three projects, as given by the three parts of 

Table 1, where the double index (j, k) indicates activity j of project k. If we were just 

starting Project 3, our combined history from Projects 1 and 2 would be a list of 9 ratios, 

1.25, 1.00, 0.57, 1.00, 0.83, 1.00, 0.50, 2.00, and 0.67. In that history, Project 1 has a 

higher weight because it has five activities compared to four for Project 2. To simulate 

one run of Project 3 under the PERT independence assumption we first sample three 

ratios from the combined history, say 1.25, 0.57 and 2.0. By multiplying these ratios by 

the estimates of Project 3, namely e1,3 = 4, e2,3 = 2, and e3,3 = 1 and summing the 

products, we simulate the project duration as 5 + 8/7 + 2 = 8.14. We repeat the same 

process multiple times to obtain our bootstrapped sample. By sorting the results we 

obtain an empirical cdf; we denote the empirical cdf of project k by Fk(t). In what 

follows, for convenience, we treat Fk(t) as if it is continuous. It is a step function, but the 

assumption is mild if we use a large number of repetitions (we use 10,000 in our 

experiments, but 1000 is typically enough). In a similar vein, Fk(t) is based on re-

sampling from a small set, so repetitions are quite likely. We can avoid repetitions by 

adding some white noise into the picture. Such white noise could represent rounding 

effects, for instance. We ran 100 repetitions for Project 3 and obtained a distribution 

ranging between 3.5 and 13; the run we demonstrated above has a p-value of F3(8.14) = 

0.69 (because 68 of the 100 runs were strictly smaller than 8.14). Next, let Ck denote the 

actual completion time of serial Project k. In Table 1, C1 = 5 + 1 + 4 + 2 + 5 = 17, C2 = 12 

and C3 = 6. Given the empirical distribution and the actual completion times, we find the 

value Fk(Ck) for each project; in our example, F3(C3) = F3(6) = 0.29. 

 

Index 1, 1 2, 1 3, 1 4, 1 5, 1 

Estimate 4 1 7 2 6 

Actual 5 1 4 2 5 

Ratio 1.25 1.00 0.57 1.00 0.83 

      Index 1, 2 2, 2 3, 2 4, 2 

 Estimate 2 4 2 6 

 Actual 2 2 4 4 

 Ratio 1.00 0.50 2.00 0.67 

 

      Index 1, 3 2, 3 3, 3 

  Estimate 4 2 1 

  Actual 1 4 1 

  Ratio 0.25 2.00 1.00 

   

Table 1. Data for Three Fictional Projects 

 

 In this process, the independence assumption is expressed by treating all historical 

ratios as one combined group. For instance, in the run we illustrated the first two ratios 
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were sampled from Project 1 and the third from Project 2. We followed this procedure for 

the five-project family. The sorted values we obtain are depicted on the left side of Figure 

6 and listed below:  

 

{0.0009, 0.0071, 0.3883, 0.8320, 0.9968}. 

 

 Perhaps surprisingly, this sample passes the Kolmogorov-Smirnov (K-S) uniformity 

test. That is due to two key facts: (i) the sample is very small, so large deviations from the 

expected value are not significant, and (ii) the K-S test is not sensitive to deviation at the 

tails. Nonetheless, it is easy to show that the results are anything but a sample from a 

standard uniform. For instance, consider the fact that three out of five points either fall 

between 0 and 5% or between 95% and 100% (namely, 0.0009, 0.0071 and 0.9968). In 

fact, these points are also between 0 and 1% or between 99% and 100%. The probability 

of the first event is given by the probability of three successes or more in a binomial B(5, 

0.1), which evaluates to 0.0086 (i.e., it is significant at the 1% level). The probability of 

the second event is associated with a binomial B(5, 0.02) and is about 0.00008. We 

conclude that the true variance of Fk(t) should be higher than the value derived under the 

independence assumption. 

 

 
 

Figure 6. Five Projects: Calibrated Results vs. Linear Association 
 

6.2. Validating Linear Association 

 We now replace the independence assumption by linear association, which is 

perhaps the simplest model for positive dependence. Let Xjk be an estimate of pjk, and we 

treat it as a random variable. Considering all nk activities of project k, we assume that 

{Xjk} is a set of nk independent positive random variables. Let the nominal estimate be ejk 

= E(Xjk), and let V(Xjk) denote the variance of the estimate. Random effects that are 

specific to activity jk are captured by V(Xjk). Processing times are linearly associated if pjk 

= BXjk where B is a positive random variable, independent from {Xjk}. We assume that B 

is lognormal with parameters s = sB and mB = ln(E(B)) − sB
2
/2. The random variable B 

models estimation bias for all projects, and bk is the particular bias realization that applies 

to project k. Let μB and VB = σB
2
 denote the mean and variance of B. Finally, let Lk denote 
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the duration of a serial project with nk activities. Our main interest is in the distribution of 

Lk. Because B and Xjk are independent, we have μjk = μBejk (for any k). However, the 

multiplication of the processing times by the same realization, B = bk, introduces 

dependence between any pair of processing times in the same project. Specifically, for 

the variance of activity jk, we obtain 

 
22222 )()()()( jkBjkjkBjkBBjk eVXVBEeVXVV    

 

whereas the covariance of any two activities within the same project is given by 

 

jieeVppCOV jkikBijjkik  ;),(   

  

We require i ≠ j in the covariance expression because σjk
2
 is not given by VBejk

2
. 

However, VBejk
2
 = (σBΣejk)

2
 is the second part of the expression for σjk

2
. Therefore, 

 

𝐸 𝐿𝑘 = 𝜇𝐵  𝑒𝑗𝑘
𝑛𝑘
𝑗=1    and  𝑉 𝐿𝑘 = 𝐸(𝐵2) 𝑉(𝑋𝑗𝑘

𝑛𝑘
𝑗=1 ) + (𝜎𝐵  𝑒𝑗𝑘

𝑛𝑘
𝑗=1 )2  

 

The element (σBΣejk)
2
 imposes a lower bound of  σBΣejk on the standard deviation of the 

duration. If ejk tends to underestimate (overestimate) µjk then µB is larger (smaller) than 1 

to compensate, but there is no effect on cvB = σB/μB. Therefore, in contrast to the case of 

independent activity durations, the cv of project length does not tend to zero as the 

number of activities on the chain grows large: it always exceeds cvB. Similarly, the bias in 

the estimate of mean project length is a multiple of the estimate, namely, (μB − 1).  

 Our task in this section is to show that this model makes possible estimating activity 

duration distributions reliably. (Even though we assume a serial structure, we can use 

linearly associated distributions to simulate projects with any network structure.) Because 

our dataset is small, we use the bootstrap method again. But in contrast to the previous 

case, where every activity was re-sampled from the full list of activities in the historical 

projects, here each simulation repetition is based on re-sampling just one of the historical 

projects, with a frequency that is proportional to nk. For instance, if we were to simulate a 

run for Project 3 in Table 1, we would randomly select either Project 1 (with probability 

5/9) or Project 2 (otherwise). Suppose Project 2 is selected, then we sample three ratios 

out of the set {1.00, 0.50, 2.00, 0.67}, with replacement, and use them to calculate the 

run's duration as we did before. As a result, if there is indeed a systemic difference in the 

mean of each historical project, that difference will manifest as variation between 

repetitions. Thus, the variance we observe for Lk will be larger, reflecting sB
2
 + sk

2
, where 

sk
2
 is the value obtained for project k by a normal Q-Q chart after the effect of bk is 

incorporated. Again we use the empirical distributions obtained by the simulation to test 

whether they are a sample from a uniform U[0, 1] distribution. The sorted values are 

listed below and depicted in the right side of Figure 6. 

 

{0.0686, 0.0692, 0.4722, 0.7301, 0.9243}. 
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Figure 7. Nine Projects Results by PERT vs. Linear Association 

 

 In this instance, there are no points in the two bands below 5% and above 95%. 

Using the binomial B(5, 0.1) again, the probability of such an event is 59%, and thus it is 

a plausible result. The sample also passes the K-S test with a higher p-value than the 

previous one, but that is practically meaningless in this instance. Figure 7 is similar to 

Figure 6, but it relates to the nine-project family. In that case, by far the best results are 

obtained under the linear association model, as depicted on the right. On the left, 

however, we made an adjustment first. To explain that, we point out that our bootstrap 

application automatically removes any estimation bias. In the five-project case there was 

some estimation bias but it was not as strong as in the nine-project family. Therefore, for 

the nine-project case, instead of using Fk(Ck), we first adjusted Ck in such a way that the 

original bias of the estimate was restored. As is clear from the left side of Figure 7, bias 

plays a crucial role in the nine-project family. This time the K-S test rejects the sample 

with a p-value of 0.000. Most points fall in a band of 10% between 90% and 100%, and a 

binomial test shows that the event of eight points out of nine falling either in the bottom 

or top 10%, which follows a binomial B(9, 0.2), is negligible (about 0.00002). By 

contrast, better results than those on the right might be suspect as too good to be true. In 

conclusion, although the data is meager, we showed that linear association leads to a 

plausible empirical project distribution estimate. It is powerful not only for better 

variance estimation when positive dependence exists in the data but also as a way to 

remove bias.  

 We can interpret linear association as a model that accepts statistical 

independence within projects but rejects it between projects. This interpretation suggests 

that we can use standard ANOVA to test the independence assumption, as it is equivalent 

to the null hypothesis that there is no difference between groups. Indeed, such ANOVA 

rejects independence for the nine-project family with a p-value of 0.0215, so it is 

significant at the 0.05 level. The p-value of the five-project family is about 0.0001; 

however, if we remove one particular project from consideration, the p-value for the 

remaining four increases to 0.0144 (but remains significant). The pertinent point is that 

the between-projects variation must not be ignored. For example, Strum et al. (2000) 

show that one of the significant explanatory variables for operation time is the surgeon; 
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the other two are the type of operation and the type of anesthesia. In effect, they show 

that if we consider sets of log-transformed operation times distinguished by surgeon, each 

has a different mean. But that is precisely what we observe for the five-project family. It 

follows that to predict the time it would take an unknown surgeon to perform an 

operation of a particular type with a particular anesthesia, we could use linear association. 

The between-surgeons variation would then be modeled by B.  

 

6.3. Linear Association in the Hill Dataset 

 We now proceed to study whether the Hill et al. (2000) data exhibits linear 

association. The data consisted of 506 programming tasks, measured in units of 0.1 days 

and ranging from 0.1 to 255.4 days, with estimates between 0.5 and 200. Tasks had 

between 1 and 133 subtasks and required between 1 and 16 programmers. Work was 

coordinated by six managers who also recorded subjective mean estimates for each task 

in advance. However, the dataset does not include information about the duration of 

individual subtasks. We obtained the data, and we use it to show that it is consistent with 

linear association. To that end we analyze the data from each manager separately, and in 

one case we trimmed the sample to account for a strong Parkinson effect. That left a 

sample of 487 tasks, with between 54 and 107 allocated to each manager. Formally 

speaking, in what follows we may need a triple index of the form jki to denote subtask j 

of task k under manager i. But because we analyze the data for each manager separately, 

we omit the third index i. For each manager, we fit a linear regression model to the log-

transformed data using the number of subtasks, nk, as the explaining variable. Hill et al. 

noted that this variable was the best choice for explaining the total time required 

(although they did not use the transformation). Indeed, we found that it provided much 

tighter estimates than the original subjective estimate, which we thereafter ignore. 

Among other things, this regression yields residuals and a standard error, SEY. We refer to 

SEY
2
 as the overall variance. Usually, if the residuals are normal, we can estimate p-

values for each of them. Those p-values should be a sample from a standard uniform 

distribution. In our case, however, we have good reason to doubt that the residuals are 

normal.  

 Under the independence assumption, task k's duration is given by the convolution 

of nk independent subtasks, denoted Xjk (or simply Xj where no confusion may arise). To 

model linear association, without loss of generality, assume that B is lognormal with 

parameters s = sB and m = −sB
2
/2; that is, E(B) = 1. We convolute the Xjk elements before 

multiplying by the bias term, B, and we use the lognormal central limit theorem to 

approximate the convolution of the sum. If the parameters of the convolution are mX and 

sX
2
 we obtain parameters mk = mX − sB

2
/2 and sk

2
 = sB

2
 + sX

2
. The value of sk

2
 denotes the 

variance of project k in logarithmic terms, as it might be estimated before the project is 

run (so there is yet no evidence on the size of bk), and similarly, mk is the mean in 

logarithmic terms. Let s1
2
 denote the variance of a single subtask in log-transformed 

space (under this manager), and let cv1
2
 denote the squared coefficient of variation of 

such a subtask without the transformation, then sk
2
 is the following function of nk, 
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In our case, the overall variance can be approximated by the average variance of all tasks. 

Suppose now that we guess a value for s1
2
; then we can use Equation (6) and the 

estimated overall variance to calculate sB
2
. For the guess s1

2
 we can calculate the desired 

p-values, because we now know how to correct for the heteroscedasticity that we expect. 

If the set of p-values is not standard uniform for a particular s1
2
 guess, we might search 

for a better fit by changing the guess. Indeed, it is straightforward to search for the best 

guess. We conducted the search with two objectives: (i) to pass the K-S test, and (ii) to 

avoid excessive numbers of instances between 0% and 1% and between 99% and 100%. 

We did so for all six managers, and Table 2 shows the results. The table lists the number 

of tasks, the regressed m and s for all tasks of that manager, s1, sB, the relative 

contribution of sB
2
 to the overall variance (ov), the p-values of the K-S test results and the 

number of points in the two one-percent bands. The binomial test proved much more 

sensitive to bad selections than the K-S test. Nonetheless, we found values that satisfied 

all tests. We see that the relative contribution of sB
2
 is not below 9% but typically it 

exceeds 40% and may even reach 100%; in this context 100% implies that the effect of 

s1
2
 is negligible. Thus linear association can explain the results of six managers out of six. 

In the case of Manager 3, it is also plausible that the results are independent, but that is a 

special case of linear association. All the binomial counts are plausible. 

 

 

Manager 

1 

Manager 

2 

Manager 

3 

Manager 

4 

Manager 

5 

Manager 

6 

Tasks 107 75 64 81 54 106 

m 0.278 0.333 0.223 0.223 -0.102 0.326 

s 1.016 1.009 1.094 1.094 0.974 0.996 

sB
2
 0.498 0.394 0.045 0.556 0.625 0.375 

s1
2
 0.390 0.413 0.971 0.238 0.000 0.885 

sB
2
/ ov 0.679 0.453 0.088 0.807 1.000 0.445 

K-S p-value 0.317 0.304 0.866 0.522 0.322 0.192 

Binomial # 1 2 0 0 1 1 

 

Table 2. Software Development under Six Managers 

 

7. Conclusions and Topics for Future Research 
 We presented theoretical arguments and field evidence for the suitability of the 

lognormal distribution as a model for activity durations. The lognormal is positive and 

continuous, so it exhibits face validity. Nonetheless, practical data is recorded in discrete 

units—sometimes coarsely. This causes ties in the data, so we must account for such ties 

in our distribution fitting and hypothesis testing. Furthermore, as predicted by Parkinson's 

Law, we may encounter many activities that are reported as taking precisely their 

estimated time. To model the Parkinson effect, we generalized the Parkinson distribution 

to allow a fraction of early activities to be reported correctly whereas the others are 

misreported as on time. We showed examples where both effects were present, yet after 

accounting for them, the lognormal remains plausible (cannot be rejected statistically). 

We also showed that projects are unlikely to be composed of truly independent activities. 

By invoking linear association to model statistical dependence, we were able to achieve 
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plausible results. Thus we propose linear association as an effective model for 

dependence in stochastic scheduling. It not only provides a plausible fit and automatic 

calibration but is also tractable. Linear association appears to be the simplest model of 

dependence that fits the data reasonably well. Furthermore, it is especially tractable for 

the lognormal distribution in conjunction with the lognormal central limit theorem. 

 Previous attempts to model activity times for practical applications are associated 

with PERT, where several parameters are estimated subjectively by experts. Those 

attempts either rely on the PERT-beta or propose other distributions (including the 

lognormal) that emulate the PERT elicitation approach. The PERT approach is flawed in 

several important ways, however. The PERT-beta distribution cannot support practical 

cases with high cv, and we presented cases with high cv. It also requires elicited 

parameters that may be unreliable. When regression-based estimates are possible, we 

strongly recommend them instead. Otherwise, it may well be better to estimate only one 

parameter and use some conservative figure for cv. 

 Our project data suggests that low variance s instances—e.g., in our construction 

example—are in the order of magnitude 0.3, medium is about 0.8, and high is at least 2. 

Judging by a precision machining case observed by Buzacott and Shanthikumar (1993), 

ratios of 1:10 between successive repetitions of the same job are not unlikely. If we 

interpret that as a ratio of 10:1 between the 90th and 10th percentiles, we obtain s ≈ 0.9. 

The associated cv values are bounded from below by these numbers. However, most 

simulation studies that authors use to test various heuristics use much lower cv values. 

For instance, the experimental results of Van de Vonder et al. (2008) and of Dablaere et 

al. (2011) involve three related beta distributions with cv values between 0.14 and 0.42. 

Black et al. (2006) use positively shifted exponential random variables with cv between 

0.33 and 0.67. (A positively shifted exponential always has cv < 1.) We recommend a 

wider range of variation in simulation studies of both machine scheduling and project 

scheduling, especially in the latter case. Furthermore, unless the Parkinson effect can be 

abolished, simulation studies should reflect it. Finally, because our data proves that 

positive stochastic dependence is indeed prevalent in practice, we should take it into 

account as well, for which purpose we propose linear association. 

 Although we validated our hypothesis on several datasets, and we encountered no 

instance where the lognormal random variable was inappropriate (after correction for the 

Parkinson effect and for ties), we encourage further validation studies as a topic for 

further research. One issue that may arise is possible leptokurtosis due to subjective 

estimates: the Hill dataset shows some evidence to that effect. However, because that 

dataset does not include observations for individual subtasks, we cannot yet provide a 

confirmation. New research may also lead to better insights for the Parkinson 

distribution. Although our current version of that distribution seems adequate, it is 

plausible that short tasks are more likely to exhibit the Parkinson effect. We observed 

some evidence of that in the Hill database. A possible explanation is that when the 

estimate is low, rounding up may be confounded with the Parkinson effect. In addition, it 

may be easier to hide earliness in a small task. Thus, there may be room for further 

development of the Parkinson distribution, but it would require much more data than we 

now have. Likewise, there is room to explore the value of more sophisticated models than 

linear association. For example, it may be beneficial to consider several independent 

common factors, each applying to a subset of activities. Some preliminary evidence due 
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to Lipke et al. (2009), in their Table 1, indicates that similar analysis also applies to cost. 

However, a persuasive validation requires cost-specific research. Such research may also 

address the relationship between cost and schedule performance. Similarly, the lognormal 

might also provide a good fit for forecasting demand. If so, and if sales are used as a 

proxy for demand, the Parkinson effect may manifest when sales are curbed by capacity 

limits. 

 Based on our results, we believe that stochastic scheduling models should, as a first 

cut, represent activity times with lognormal distributions exhibiting the same coefficient 

of variation, and linear association should be used to represent stochastic dependence. 

Lognormal random variables with the same cv are stochastically ordered. It can even be 

shown that they are stochastically ordered in the likelihood ratio sense (Baker and 

Trietsch 2010b). Stochastic ordering is often useful in sequencing models. For instance, 

Trietsch and Baker (2008) present a polynomial algorithm for minimizing the number of 

stochastically tardy jobs (defined as jobs whose probability of being tardy exceeds a 

given limit) when jobs are stochastically ordered. Theorem RN6.1 in Baker and Trietsch 

(2010a) is another example of a sequencing result that relies on stochastic ordering. 

Furthermore, Theorem 6.7 in Baker and Trietsch (2009a) helps extend results that rely on 

stochastic dominance to linearly associated processing times; for instance, it can be 

applied to the model of Trietsch and Baker (2008). Some lognormal machine sequencing 

models can be solved by mathematical programming approaches (Baker & Trietsch 

2010a). By employing the lognormal central limit theorem, several other lognormal 

models can be solved approximately using similar analytic models. Thus, lognormal 

scheduling is a challenge not only for stochastic scheduling modelers but also for 

mathematical programming experts.  

 Starting with Britney (1976) and Wollmer (1985), several authors studied crashing 

models with stochastic activity times. A common thread of all those models is that they 

assume crashing only changes the mean or they rely on the triplet method (e.g., Gutjahr et 

al. 2000; Bregman, 2009). Baker and Trietsch (2009a) use sample based optimization for 

various modes of continuous crashing including, at one extreme, the special case where 

only the mean changes and, at the other extreme, a case where cv is held constant. Based 

on our empirical results, it would be useful to develop continuous and discrete crashing 

models that assume crashing affects the estimates whereas cv remains constant.  

 Finally, to validate our results in cases where the Parkinson effect is involved, we 

relied on trimmed samples, thus effectively discarding potentially useful data to render 

the remaining sample complete. It would be advantageous to develop statistical tests that 

do not require trimming. Powerful normality tests are akin to testing whether the R
2
 value 

of the appropriate Q-Q chart is sufficiently high (Filliben 1975, Looney & Gulledge 

1985). Essentially, such tests rely on simulated results, although in some cases empirical 

distributions have been fitted to them (Royston 1993). Verrill & Johnson (1988) extended 

the same approach to censored data, where censoring removes one of the tails of the 

distribution. Similarly, it should be possible to develop simulation-based tests tailored for 

the Parkinson distribution with lognormal core. 
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