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Major airlines are selling increasing numbers of interline itineraries, in which flights operated by two or 

more airlines are combined and sold together. One reason for this increase is the rapid growth of airline al-

liances, which promote the purchase of interline itineraries and therefore virtually extend the reach of each 

alliance member’s network. This practice, however, creates a difficult coordination problem: each member 

of the alliance makes revenue management decisions to maximize its own revenue, and the resulting beha-

vior may produce sub-optimal revenue for the alliance as a whole.  Airline industry researchers and consul-

tants have proposed a variety of static and dynamic mechanisms to control revenue management decisions 

across alliances (a dynamic mechanism adjusts its parameters as the number of available seats in the net-

work changes).  In this paper, we formulate a Markov-game model of a two-partner alliance that can be 

used to analyze the effects of these mechanisms on each partner’s behavior. We begin by showing that no 

Markovian transfer pricing mechanism can coordinate an arbitrary alliance.  Next, we examine three dy-

namic schemes, as well three forms of the static scheme widely used in practice. We derive the equilibrium 

acceptance policies under each scheme and use analytical techniques, as well a numerical analyses of sam-

ple alliances, to generate fundamental insights about partner behavior under each scheme.  The analysis and 

numerical examples also illustrate how certain transfer price schemes are likely to perform in networks 

with particular characteristics. 
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1. Introduction 
When one of the authors recently planned a trip from Boston to Barcelona, British Airways 

offered a convenient itinerary for $823.  The itinerary began with a leg on British Airways from 

Boston to London, followed by a second leg on another airline, Iberia, to Barcelona.   We will 

call such an itinerary an interline itinerary, for it includes service on multiple airlines.  The 

availability of this two-leg interline itinerary for this fare is contingent on two decisions: (1) the 

airline who sells the ticket (the marketing airline, in this example British airways) must make a 

seat available on one leg, and (2) the operator of the other leg (the operating airline, Iberia) must 

agree to accept the connecting passenger from the marketing airline.  Because both airlines prac-

tice revenue management, these decisions depend upon the price paid by the consumer to the 

marketing airline for the ticket and the price paid by the marketing airline to the operating airline 

for the use of a seat.  This article examines agreements among airlines that govern the latter 

price, sometimes called revenue sharing, transfer price, or proration agreements.  We show how 

these agreements have subtle and potentially significant effects on individual airline behavior as 

well as on the total revenue collected by multiple airlines across their combined networks. 

It is becoming increasingly important to understand the impact of proration agreements on 

airline revenue management because sales of interline itineraries have been growing.  This in-

crease is due in part to a type of marketing arrangement called a code-share agreement.  Under 

this arrangement, the operating airline’s flight is also listed as a flight with the marketing air-

line’s name.  In the example above, the second leg had an Iberia flight number, but was also la-

beled British Airways Flight 7073 from London to Barcelona.  Analysis of data from the U.S. 

Department of Transportation (BTS, 2006) reveals that the fraction of interline itineraries within 

the U.S. rose from 10% in 1998 to 20% in 2004, and most of those interline itineraries were 

marketed under code-share agreements.  Overall, 46% of revenues collected from U.S. domestic 

flights in 2004 came from interline itineraries. 

A second factor driving up interline traffic is the growth of airline alliances.  These alliances 

usually combine code-share agreements with other arrangements, such as schedule coordination 

and the merger of frequent-flier programs.   In March 2006, 59% of all worldwide ASMs (avail-

able seat miles, a measure of total capacity equal to the number of seats multiplied by the number 
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of miles flown, summed over all flights) were flown by airlines belonging to one of the three 

largest international alliances, Star, SkyTeam or Oneworld (Lott, 2006).  Both international and 

U.S. alliance activity are expected to grow (Lott, 2006; Belden, 2007; Shumsky, 2006). 

While these international alliances facilitate formal marketing and operational arrangements 

among airlines, this paper uses the term alliance in a much weaker sense: an alliance is formed 

by any two airlines that exchange interline passengers and that have a proration agreement for 

the revenue collected from the sale of interline itineraries. 

In practice, the rules for revenue sharing are usually laid out in special prorate agreements 

(SPAs) that are negotiated by alliance partners.  In the absence of an SPA, airlines follow the 

rules set out by the International Air Transport Association (see IATA, 2007, for details of the 

rules to be implemented over the next few years).  Whether they are encoded in an SPA or by the 

IATA, most rules include fixed transfer prices for particular flight/fare-class combinations, or 

other simple allocation procedures such as a split in revenue (a proration rate) based on relative 

mileage.  For example, under such a mileage proration scheme, British Airways would receive 

the lion’s share of the $823 in the example above for its Boston-to-London flight.   Throughout 

this paper we call such rules static schemes, for they do not adjust proration rates as demand is 

realized and seats are sold. 

Although static schemes are easy to manage, they can lead to suboptimal decision-making by 

member airlines and lost revenue for the alliance as a whole.  For our example, under mileage 

proration Iberia would receive a relatively small share of the ticket revenue when flying interline 

passengers.  Therefore, Iberia may choose to focus on its own (non-interline) customers and not 

hold seats for British Airways customers, who may be more lucrative for the alliance.  The un-

derlying flaw in any static proration scheme is that the revenue-sharing proportions are not ad-

justed to reflect the actual value of seat inventory.  Because the revenue management system of 

each airline in the alliance maximizes the revenue of that airline, an airline may reject an itine-

rary if the transfer price undervalues the real-time value of its seats, even if the total revenue 

from the itinerary is large. 

Given the deficiencies of static schemes, major airlines are considering dynamic schemes, 

such as the use of the real-time opportunity costs of seats, or “bid prices,” as transfer prices.  In 

this paper we examine dynamic schemes that have been described in the published literature (see 
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Vinod, 2005) and have been suggested to the authors by industry executives and revenue manag-

ers.   In the industry there is interest in dynamic schemes, but also much uncertainty.  There are 

certainly technical and legal barriers to implementation; for example, antitrust legislation in the 

U.S. prohibits the exchange of certain types of information among airlines.  But another signifi-

cant barrier is uncertainty over how revenue-maximizing airlines would respond to dynamic 

schemes, and whether such schemes would produce real benefits to the alliance.  In fact, there is 

no published literature on this topic and, to our knowledge; there has been no rigorous analysis 

of these effects by researchers within the industry.  This paper is a first attempt to fill that gap. 

Now we summarize the organization of the paper and its results.   After reviewing the rele-

vant literature in §2, in §3 we describe our general model for a two-airline alliance.  In §4 we 

describe a centralized network and determine the first-best policies for a centralized yield man-

agement system.  In §5 we describe a two-airline alliance model and analyze static and dynamic 

transfer price schemes.  In this section we first use a counterexample to show that no dynamic 

scheme is guaranteed to maximize alliance-wide revenue, unless the dynamic scheme includes 

revenue-sharing rules that depend upon the sample path of inventory sales (note that a scheme 

based on sample paths would be orders of magnitude more complex than the static and dynamic 

schemes being considered by the airlines).   We then derive equilibrium policies for the alliance 

partners under certain dynamic schemes, and we use the analysis to highlight the strengths and 

weaknesses of the schemes in terms of total alliance revenue.  In §6 we describe numerical expe-

riments that support the insights from §5.  The experiments also compare the performance of 

static and dynamic schemes, given certain network parameters.  We find that static schemes can 

perform as well as dynamic schemes for certain networks, but that the performance of a static 

scheme that is optimal for one network can degrade quickly as the network parameters change.  

Dynamic schemes often perform better and are more robust. We find, however, that the perfor-

mance of dynamic schemes can be significantly reduced if each operating airline chooses a trans-

fer price to maximize its own revenue.  Such would be the case, for example, if the partners in-

itially agree to use bid prices as transfer prices, but then each partner attempts to increase its rev-

enue by reporting incorrect bid prices. Finally, in §7 we summarize our results and describe fu-

ture research. 
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There are a few caveats for the results in this paper.  First, we make strong assumptions about 

the amount of information available to each alliance partner.  Specifically, we use a Markov 

game model to describe the alliance, and we use the Nash equilibrium to describe the airlines’ 

behavior under each proration scheme.  For legal and technical reasons the airlines cannot coor-

dinate their revenue management systems, so it is appropriate to use the tools of noncooperative 

game theory.  To keep the problem tractable, however, we assume that the airlines share the 

same information about the state of the game and the distribution of future events, e.g., each air-

line has perfect information about its partner’s inventory level, and both have identical forecasts 

of future arrival probabilities and revenue distributions over the entire alliance network (in tech-

nical terms, we define a game of complete information).  While this assumption is not realistic, 

we believe that the amount of transparency in the industry is increasing.  For example, airlines 

regularly use the web to monitor the lowest available fare of their competitors, and hire “market 

intelligence services” such as QL2 (www.ql2.com) to gather information about competitor ac-

tions.   Our model represents a logical extreme case, and the full-information assumption allows 

us to generate fundamental insights on how certain proration schemes behave.   We provide addi-

tional details and discussion of our information-sharing assumptions in §3.2.  In general, analysis 

of games with incomplete information will be an interesting area for further research. 

A second caveat is that that the numerical experiments described in §6 were conducted using 

small networks, in terms of the number of flights and the number of seats.  Again, our purpose is 

to gain basic insights, i.e., to identify the fundamental advantages and disadvantages of each 

transfer price scheme.  In addition, we demonstrate that many of these insights apply as the num-

ber of seats in the network grows.  An important area for additional research, however, will be to 

examine alliance performance over networks of realistic size. 

Finally, at a higher level than our analysis, the alliance partners are engaged in a cooperative 

process to determine which routes should be available for interline traffic and what proration 

rules to use on those routes.  In general, the partners seek to increases alliance-wide revenue and 

to allocate revenues so that all members are willing to participate in the alliance.  We do not 

model this higher-level process.  Instead, our model provides information about how airlines be-

have, and how total revenues are affected, given sets of interline routes and particular proration 

rules.   Models that focus on the higher-level problem have begun to appear in the literature, e.g., 
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Agarwal and Ergun (2007) examine the allocation mechanism design problem for cargo ship-

pers.  For airline revenue management, successful high-level negotiations depend upon informa-

tion about the effects of particular proration schemes on network revenues.  To our knowledge, 

the model presented here is the first to provide such information. 

2. Literature Review  
Revenue management (also referred to as yield management) and its application to the airline 

industry have received a great deal of attention since the 1970s when Littlewood (1972) first de-

scribed the basic problem.  In that article, Littlewood introduces the result (now referred to as 

Littlewood’s rule) that a request for a seat should be fulfilled only if its revenue exceeds the ex-

pected future value of the seat in question.  This intuitive rule forms the basis of many control 

policies in both theory and practice. 

Numerous authors have expanded on Littlewood’s work.  See, for example, Belobaba (1989) 

who examines a problem with multiple fare-restriction combinations, Glover et al. (1982) who 

looks at the passenger mix problem in a network environment, You (1999) who examines a dy-

namic pricing model, and Talluri and van Ryzin (2004a) who utilize a discrete choice model of 

demand.  For a more thorough description of the revenue management literature, see the survey 

by McGill and van Ryzin (1999) and the book by Talluri and van Ryzin (2004b). 

The use of competitive game theory in revenue management has been limited.  Vulcano et al. 

(2002) examine a dynamic game in which a seller faces a sequence of customers who compete 

with each other in an auction for a fixed number of units.  Netessine and Shumsky (2004) ex-

amine both horizontal and vertical competition between two airlines, where each airline flies a 

single leg. 

Several aspects of airline alliances have been examined in the literature.  Barron (1997) dis-

cusses many of the legal implications of airline alliances, focusing on code-sharing agreements 

used widely in the industry.  Park (1997) and Brueckner (2001) examine the economic effects of 

alliances on fares, traffic levels, profits and market welfare.  Brueckner and Whalen (2000) pro-

vide an empirical analysis of the effects of international alliances on fares, showing that interline 

fares charged by alliances are approximately 25% lower than those charged by non-allied carri-

ers.  Ito and Lee (2006) examine the impact of domestic alliances on airfares. 
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Little attention, however, has been given to how revenue management should be imple-

mented by an airline alliance.  Wynn (1995) describes simple transfer price schemes based on the 

value of local fares.  Boyd (1998a) discusses the methodological and technical challenges of the 

alliance revenue management problem.  He also refers to a more formal analysis in an unpub-

lished working paper (Boyd, 1998b) in which he formulates a static linear program to describe 

the alliance revenue management problem.   Boyd then derives conditions under which the seat 

allocation between the two airlines maximizes alliance-wide revenue under this model.  Vinod 

(2005) describes many of the alliance coordination mechanisms now being considered by the 

airlines, but provides no formal analysis of their advantages and disadvantages.  Some of the 

schemes analyzed in this paper correspond to mechanisms described by Vinod.  Shumsky (2006) 

argues that low-cost competitors are driving the network airlines to rely on alliances for an in-

creasing proportion of their traffic.  Both Shumsky (2006) and Fernandez de la Torre (1999) dis-

cuss the need for more research on the effectiveness of alliance agreements, a need we attempt to 

fill here.  In their paper on revenue management games, Netessine and Shumsky (2004) describe 

and analyze a static alliance revenue-sharing mechanism for a two-leg network based on the ex-

pected flow of passengers. In this paper we analyze the performance of dynamic coordination 

mechanisms that are designed for arbitrary alliance networks and are similar to schemes that are 

proposed by, or actually used by, the airlines. 

Ongoing research by Houghtalin et al. (2007) and Agarwal and Ergun (2007) looks at various 

aspects of alliances, focusing specifically on cargo carriers. In addition to the inherent difference 

between the cargo and passenger revenue management problems (see Kasilingam 1996), their 

analysis differs from ours in two fundamental ways: 1) they focus on the high-level alliance for-

mation problem, with cooperative game theory as the appropriate method, while we formulate a 

noncooperative game, given an existing alliance and particular revenue-sharing rules; and 2) they 

focus on a deterministic optimization problem in which all demand for cargo service has been 

realized before routing decisions are made, while our passenger yield management problem is 

most appropriately described by a model in which demand is uncertain and arrives over time. 

Finally, this paper is related to the extensive literature on supply chain coordination.  See 

Nagarajan and Sošić (2008) and Cachon and Netessine (2004) for overviews of the related litera-

ture that use, respectively, cooperative and competitive game theory.  There are several attributes 
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of our problem, however, that distinguish it from this research stream.  First, the flow of products 

in the traditional supply chain literature moves in one direction, from raw materials to the con-

sumer.  Therefore the unused product does not move ’sideways’ within a level.  Second, in the 

supply chain literature, production of a product begins at one level with one set of firms (suppli-

ers) and demand is fulfilled at another level by another set of firms (retailers).  Neither attribute 

holds for our problem.  For a specific contrast, consider the literature on assembly systems, for 

we can think of a multi-leg itinerary as a final product assembled from multiple components.  In 

the traditional supply chain literature, an assembler receives components from several suppliers 

that are combined to create a new product to sell (e.g,  Nagarajan and Bassok, 2008 and Granot 

and Yin, 2008.)  In our model either airline may serve as the marketing airline, the de facto as-

sembler, and either airline may serve as the operating airline, the de facto supplier. 

In addition, the traditional research on supply chain coordination focuses on either single-

period newsvendor problems (e.g., Lariviere and Porteus, 2001) or repeated games in which in-

ventory is replenished between each repetition of the game (e.g., Cachon and Zipkin, 1999).  The 

characteristics of such problems are quite different from ours, a finite, multi-period problem with 

fixed capacity allocated to a stochastic arrival stream.  Certain results from our paper may be 

similar in interpretation to results from the research on the economics of supply chains.  For ex-

ample, the effect of the partner price scheme in §5.4.3 can be seen as a form of double-

marginalization (Spengler, 1950).  In general, however, our problem context, model and key re-

sults are quite different from those in the supply chain literature. 

3. General Alliance Network Model 
We consider a dynamic model of an alliance consisting of two partner airlines (carriers), in-

dexed by { }2,1∈c  (in a slight abuse of notation, we will denote the “other” airline by -c instead 

of by 3 – c).  The model can be seen as an extension of the network model described by Talluri 

and van Ryzin (1998) into a two-player game framework. 

Each flight leg in the network is characterized by an origin, destination, and departure time 

(for the remainder of this paper the terms ‘flight’ and ‘flight leg’ are used interchangeably).  The 

number of flights operated by airline c is denoted cm  and 21 mmm +≡  is the total number of 

flights offered by the alliance.  The alliance offers n itineraries, and each itinerary is either a sin-
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gle flight or a series of connecting flights within one or both networks. The set of all itineraries is 

denoted N and has cardinality n.  Within the alliance, these itineraries are divided into three sub-

sets: those that involve only airline 1’s flights (N1), those that involve only airline 2’s flights (N2) 

and those that use flights from both airlines (NS). Let 1n , 2n  and Sn  be the cardinality of each 

subset, so that Snnnn ++= 21 .  We will refer to the sets N1 and N2 as intraline itineraries and the 

set NS as interline itineraries because at least one leg on any itinerary in NS will not be operated 

by the airline that sold the ticket. 

We use the matrix A to specify the inventory requirements of the itineraries offered by the al-

liance.  The matrix element 
ij

A  is the number of seats on flight i required for itinerary j, and 

therefore the column vector jA  specifies the total inventory required from the alliance network 

to satisfy itinerary j.  In discussions below, we will assume that each request is for an individual 

passenger (i.e., { }1,0∈
ij

A ), however group (multi-seat) requests could be handled by creating 

additional columns with each positive element equaling the number of passengers in the group.  

For example, an itinerary from Rochester, NY to Denver, CO that passes through Chicago, IL 

would have 1’s in the rows for Rochester-Chicago and from Chicago-Denver.  To handle a fami-

ly of 4 looking to make the same trip, A would need another column with 4’s in those same rows. 

For clarity, A can be partitioned as follows, 

 

such that the first 1n  columns have only positive elements in the first 1m  rows (airline 1’s net-

work), the next 2n  columns have only positive elements in the last 2m  rows (airline 2’s network) 

and the final Sn  columns have positive elements in both sets of rows. 

While interline itineraries may be sold by either alliance partner (requests for itineraries in NS 

may be received by either airline 1 or 2), we assume that intraline itineraries are only sold by the 

airline that operates the flights (requests for itineraries in Nc are only received by airline c).  In 

practice, airlines do sell tickets for itineraries that are exclusively on another airline’s network.  

With some additional notation, this possibility can be incorporated into the model, and all of the 

A1

0 

0 AS1 

AS2 

A = 

N1 N2 NS
1       …       n1  n1+1 …  n1+ n2  n1+ n2 +1  …   n   

   1 
 

   #  
 

   m1 

 m1+1    

   #  
  

   m   
A2
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following results will continue to hold.  To keep the exposition and notation simple we will as-

sume that each airline handles its own intraline requests. 

The number of remaining (unsold) seats for flight i is denoted ix . The m-dimensional vector 

xK  is the joint vector of remaining inventory for the alliance: { }.,,, 11 11 mmm xxxxx ……K +≡  

3.1. The Demand Process 

We consider a K-period booking horizon, with the current period, denoted k, decreasing from 

K to 0. The probability that airline c receives a request for itinerary j in period k is 0≥cj
kq . We 

assume that each period is short enough such that the probability that the alliance receives more 

than one itinerary request in a given period is negligible. The probability that no request arrives 

is then: 

 0

{1,2}

1 0.
∈ ∈

= − ≥∑ ∑ cj
k k

c j N

q q  (1) 

The revenue cj
kR  associated with a request to airline c for itinerary j in a given period k, 

conditional on a request being made, is a nonnegative random variable with known cumulative 

distribution function (CDF) ( )cj
kF r . We assume that cj

kR  has a finite expectation. The comple-

mentary CDF is ( ) 1 ( )= −� cj cj
k kF r F r .  Note that ‘c’ in cj

kR  is the carrier that receives the consum-

er’s request (the marketing airline).  We assume that ( )cj
kF r is differentiable with known density 

function ( )cj
kf r . However, wherever we express our results in terms of ( )cj

kf r , similar results 

can be found for non-continuous distributions.  

3.2. Assumptions about the Arrival Process and Information-Sharing 

We assume that the distribution of each cj
kR is independent of the realized revenue in preced-

ing periods.  Even simple (first-order) dependency, while theoretically easy to handle with our 

model, would be notationally and computationally cumbersome. 

In addition, assume that each player formulates an open-loop dynamic program that does not 

utilize the realized arrival/revenue stream as feedback for its optimization problem.  One could 

imagine several closed-loop variations of our model.  For example, demand intensity for a given 

itinerary could be characterized by an unknown parameter, which would be updated as demand 

is realized.  Such models would be quite complex and in practice would likely be handled by up-



 

 11

dating the inputs to the model over the horizon without explicitly accounting for the future ef-

fects of this updating process when calculating the current value functions. 

We also assume that there is independence between acceptance decisions in one period and 

the arrival process in subsequent periods.  Specifically, we assume that a customer, when denied 

a ticket, will not submit a new request to the alliance for the same or a similar itinerary.  This as-

sumption is consistent with the assumptions that underlie many of the models in the revenue 

management literature.  Incorporating multiple customer preferences into the optimization prob-

lem is an area of ongoing research (e.g., see Talluri and van Ryzin, 2004a).  Within alliances, 

this behavior would add an interesting wrinkle to our problem because the revenue management 

decisions of each airline could, potentially, affect the arrival process of its partners.  

As noted in §1, in our model the airlines share full information about their partner’s invento-

ry levels, forecasts of arrival processes, and revenue distributions.  This allows the airlines to 

calculate, in each time period, a common expected value for a seat on any flight in the network.  

Using the terminology of game theory, we assume that each airline knows the strategies and 

payoffs of its partner and therefore plays a game of complete information. While this model is 

stylized, it allows us to generate fundamental insights into the advantages and disadvantages of 

static and dynamic transfer price schemes. 

While we assume that each airline knows the potential payoffs of its partners, we do not as-

sume that each airline immediately observes realized payoffs.  Specifically, under the partner 

price scheme of §5.4.3, the operating airline must post its transfer prices for interline inventory 

without knowing the realized revenue associated with an interline request in that period (of 

course, the marketing airline sees any realized revenue).  Therefore, the partners are playing a 

game of imperfect information.  This assumption reflects an important source of information 

asymmetry found in the real world.   For a given itinerary there exist numerous classes and dis-

tribution channels through which the ticket can be sold; the range of prices across these classes 

and channels creates the distribution ( )cj
kF r  of revenue for each itinerary. Although the operating 

airline may know the distribution of revenue because prices are publicly posted, it cannot know 

the specific class being sold or channel being used at the moment the marketing airline receives a 

specific purchase request. 
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3.3. Assumptions about Revenue Sharing 

In general, the proration scheme used by the alliance will influence both the total revenue re-

ceived by the alliance and the allocation of revenues to each of the partners. We assume that the 

ultimate goal of each partner is to maximize its own wealth (revenue).  It is reasonable to as-

sume, however, that by forming an alliance, the partners are seeking a scheme that increases their 

joint profits, using some form of ex-ante revenue distribution (e.g., a participation fee) to ensure 

that all members of the alliance will continue to participate. In practice, this problem is often 

solved by finding a set of interline routes on each airline that leads to a rough balance in the rev-

enue exchanged between the airlines (Ito and Lee, 2006). The choice of mechanism for the dis-

tribution of total revenues is a bargaining problem that we do not examine here. We assume that 

some mechanism has already been chosen and that both airlines are willing to participate in the 

alliance. Therefore, our primary focus will be on examining how the various trading schemes 

affect total alliance revenue. 

4. Centralized Control 
Here we describe the optimal policy for a single, centralized controller making all decisions 

to maximize total alliance revenue.  In general, members of an airline alliance cannot adopt cen-

tralized revenue management controls (see the end of this section for further discussion), but 

these results are useful as they lead to an upper-bound on the total revenue for the alliance.  We 

will call this upper bound the first-best revenue. 

4.1. Decision Process 

The fundamental decision made by the centralized controller is whether to accept or reject a 

request for an itinerary j, given the revenue offer 
cj
kR  and the current state of the system: the re-

maining periods, k, and the remaining inventory of the alliance, xK .  Let ( )xJ k
K  denote the total 

(current and future) expected value for the alliance given inventory xK  with k remaining periods 

and let ( )j
k AxJ ,KΔ  be the opportunity cost to the alliance of the inventory required for itinerary j: 

 ( ) ( ) ( )j
kk

j
k AxJxJAxJ −−≡Δ KKK, . (2) 

For convenience, let ( ) −∞=xJk
K  whenever one of the components of xK  is negative. 

A policy for centralized control consists of a set of acceptance rules, ( )xu j
k

K;• , such that 
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( )
⎪⎩

⎪
⎨
⎧

=
otherwise.0

 , revenue with itinerary for  ticket a sell  towilling
  is alliance  the,inventory  remaining with  at time if,1; rj

xk
xru j

k

K
K

 

We now define the joint arrival probability, j
kq , and the corresponding conditional CDF, j

kF , 

of the conditional revenue, ( )rR j
k , for a request made to the alliance (rather than to a particular 

partner c) for itinerary j in period k: 

j
k

j
k

j
k qqq 21 +=  

( ) ( ) ( )rF
q
q

rF
q
q

rF j
kj

k

j
kj

kj
k

j
kj

k
2

2
1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= . 

The Bellman equations for optimal centralized control can then be written as: 

( ) ( ) ( ) ( )( )[ ]

( ) 00

,,E

0

11
0

KKK

KKKKK

≥∀=

−++= ∑
∈

−−

xxJ

xRuAxJxRuRqxJqxJ
Nj

j
k

j
k

j
k

j
k

j
k

j
k

j
kkkk

 

where ( )
{ }

( ){ }uAxJruxru j
k

u

j
k −+= −

∈

KK
1

1,0
maxarg,  

Given a request, the centralized controller either accepts the request, receiving the associated 

revenue and reducing the inventory level, or denies the request, moving to the next period with 

the same inventory. 

4.2. Optimal Policies 

The decision faced by the centralized controller is identical to the decision faced by a single 

airline that maximizes the revenue generated by the combined network of the alliance.  We can, 

therefore, apply results derived for a single airline network.  

PROPOSITION 1. The optimal acceptance policy for centralized control is of the form: 

( ) ( )
⎩
⎨
⎧ Δ≥

= −

.0
; if1

; 1

otherwise
AxJr

xru
j

kj
k

K
K

 

PROOF. See Talluri and van Ryzin 1998, Proposition 1. 
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Under the optimal policy, the alliance accepts any request with associated revenue greater than 

or equal to the alliance’s opportunity cost of the inventory used on that itinerary.  Simply put, it 

accepts a request if it is beneficial (in expectation) to do so. 

Practical limitations, however, prevent most alliances between large partners from ceding 

control of their revenue management systems to a central controller and using an optimal policy 

such as the one described in Proposition 1.  Barriers to coordination include technical incompati-

bilities among revenue management systems within an alliance, competitive considerations (al-

liance partners are often competitors on many routes and therefore do not want to merge revenue 

management systems), and antitrust laws.  There are examples, however, of centralized control 

in the airline industry.  Regional airlines sometimes allow their national partners to collect all 

revenues and make all booking decisions, and revenue-sharing is accomplished with a fixed 

payment per flight to the regional partner (e.g., similar arrangements are used in the Continen-

tal/ExpressJet and United/Skywest alliances; see Shumsky, 2006).  For the remainder of this pa-

per we compare this centralized policy with the policies followed by airlines when revenue man-

agement decisions are distributed among the partners in the alliance.  That is, the following de-

centralized control schemes have been used, or are intended for use, among major airlines such 

as the primary members of the SkyTeam, Star and OneWorld alliances. 

5. Decentralized Control 
In this section we examine airline behavior when revenue management decisions are decen-

tralized among alliance partners.  We assume that each alliance partner is free to accept or reject 

a request for an interline seat, as is true under the free sale system that is commonly used by ma-

jor airline alliances (Boyd, 1998a).  In our model, interline sales follow the following steps. First, 

an airline (hereafter: the marketing airline) receives a request for an interline itinerary. Next, a 

transfer price is set for the seats on flights operated by its partner (the operating airline) that are 

needed to complete the itinerary (there are a variety of methods for setting transfer prices, and 

we will describe specific schemes in §5.3 and §5.4).  Next, the operating airline decides whether 

to make its seat available, and then the marketing airline decides whether or not to sell the com-

plete itinerary.  Finally, if the itinerary is sold the transfer price is paid to the operating airline. 
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In §5.1, we will describe our model for the alliance under decentralized control.  In §5.2, we 

will show by counterexample that no transfer pricing scheme can guarantee optimality under 

such a system, and we gain insights into the pitfalls inherent in transfer pricing schemes by ex-

amining the equilibrium behavior of the alliance partners under a generic decentralized scheme.  

In §5.3 and §5.4, we will describe the equilibrium behavior of the partners under specific transfer 

price schemes.  In §5.3, we examine static proration, in which revenue from all interline tickets is 

split according to a fixed proportion.  This scheme is currently used within many alliances.  In 

§5.4, we analyze three dynamic schemes, which are based on systems proposed by Vinod (2005) 

and on systems that are being considered in the industry.  In §5.5, we discuss the benefits of al-

lowing the operating airline to set the transfer price and therefore share any surplus revenue re-

ceived by the alliance for an interline request. In §5.6 we consider how revenue is allocated be-

tween partners under each scheme, and in §5.7 we discuss the computational challenges one fac-

es when attempting to calculate the equilibrium behavior of partners in an alliance. 

5.1. Decision Process 

We model the set of dynamic decisions for both airlines as a finite-horizon Markov game 

(Heyman and Sobel, 2004).   While at the highest level the formation of the alliance can be 

viewed as a cooperative game, the contractual revenue-sharing mechanism must be implemented 

within each airline's revenue management system. These revenue management systems are inhe-

rently non-cooperative, optimizing each airline’s revenue without taking into account each deci-

sion’s impact on the partner.  Therefore we assume that, given the transfer-pricing rules of the 

alliance, the revenue management systems of the airlines are locked in a non-cooperative game.   

The two alliance airlines are the players in the game, and in §3.2 we described the informa-

tion available to each player.  The players’ possible actions are quite simple: whether to accept or 

reject an itinerary request.  In addition, under the partner price scheme described in §5.4.3, the 

operating airline has one more action, setting the transfer price.  Because we use a Markov game, 

immediate payments and transition probabilities in each state depend only on the action in that 

state.   

Let ( )xJ c
k
K  denote the total (current and future) expected value for airline c given inventory 

xK  with k remaining periods, with ( )xJ k
K  denoting, as before, the total value for the alliance, so 

that ( ) ( ) ( )xJxJxJ kkk
KKK 21

+= . As in definition (2), the opportunity cost of the inventory used by an 



 

 16

itinerary is denoted with a ΔJ term, though here we are concerned with each airline’s individual 

opportunity cost, 

( ) ( ) ( )jc
k

c
k

jc
k AxJxJAxJ −−≡Δ KKK, , 

in addition to the opportunity cost of the alliance as a whole, ( )j
k AxJ ,KΔ .  As with centralized 

control, we define ( ) −∞=xJ c
k
K  whenever a component of xK  is negative. 

A policy for airline c consists of a set of acceptance rules, ( )xu c
k

K;• , such that: 

( )
⎪⎩

⎪
⎨
⎧

=
otherwise,0

,  revenuenet  with itinerary for  ticket a sell to
  willingis  airline ,inventory  remaining with  at time if,1; rj

cxk
xru cj

k

K
K

 

Under the partner price scheme, the policy also includes setting the internal transfer price, cj
kp , 

for each sub-itinerary. 

The transfer price, ( )xpcj
k
K , is a real number associated with each airline c, itinerary j, invento-

ry level xK  and period k.  For certain schemes ( )xpcj
k
K  is also a function of the revenue associated 

with the request.  To simplify the notation, however, we will not include cj
kR  as an argument of 

cj
kp .  Airline c’s partner must pay ( )xpcj

k
K  to airline c to sell the interline itinerary j.  Let ( )xpc

k
KK  be 

the n-vector of all transfer prices in period k.   

Note that we allow transfer prices to vary across each and every itinerary even if the sub-

itinerary used on the operating airline is the same across multiple itineraries.  A specific alliance 

arrangement may not allow for this level of detail.  In particular, the marketing airline may re-

quest a sub-itinerary from the operating airline without revealing the entire itinerary, and there-

fore within each period the alliance will use a single transfer price for each sub-itinerary on the 

operating airline, regardless of the itinerary being sold by the marketing airline.  While we do not 

examine the precise effects of this assumption, one would expect that a reduction in the amount 

of shared information would reduce the overall value of the alliance under decentralized control. 

While the specific form of the Bellman equations in the decentralized alliance will depend on 

the transfer price scheme used, the general form can be written as, 
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 (3) 

( )
{ }

( ){ } ( ) ( ).~  and  maxarg, where 1
1,0

xpRxRuAxJruxru cj
k

cj
k

cj
k

j
k

u

cj
k

KKKK −
−

∈
−=−+=  

The first summation corresponds to airline c’s intraline itinerary requests.  As with the cen-

tralized model, airline c must then decide whether to accept a request.  The second summation 

corresponds to airline c’s interline itinerary requests.  Again, it must choose to accept or deny the 

request, however, the revenue on which this decision will be made is the revenue associated with 

the request less the transfer price paid to the alliance partner. The remaining two summations 

correspond to interline and intraline requests to airline c’s partner, while the final term corres-

ponds to the “no arrival” case.  While airline c receives no revenue in the cases corresponding to 

the final summation, the change in its partner’s inventory does affect its future expected value. 

Note that in (3) the accept/reject control variables u represent actions taken by the marketing 

airline, and the formulation does not explicitly allow the operating airline to reject a request even 

though, under free sale, this action is available to the operating airline.  We will see that it will 

not be necessary to explicitly model the operating airline’s acceptance policy under any of the 

dynamic schemes described in §5.4, for under all three schemes the transfer price is always suf-

ficiently large such that the operating airline will choose to accept the sale.  Under the static 

schemes of §5.3 the operating airline may choose to reject a sale, and in that Section we will dis-

cuss a modification to (3). 

5.2. Non-Optimality of Markovian Transfer-Price Schemes 

Before examining specific transfer price schemes in detail, we describe a simple counter-
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example to demonstrate that no Markovian transfer scheme can guarantee network optimality, as 

long as the transfer scheme is based solely on sales of interline itineraries.  By ‘Markovian’ we 

refer to schemes that are completely defined by the current state of the network and do not de-

pend upon past states.  Non-Markovian schemes that depend on the particular sample path (the 

history of which airline sold each seat, for how much, and when) could achieve optimality in the 

following counter-example.  The complexity of such schemes, however, would make them im-

possible to implement. 

Consider two airlines, 1 and 2, each operating one flight; each flight has one remaining seat.  

Table 1 shows the expected demand over a two-period horizon.  In the second column, an itine-

rary (x,y) requires ‘x’ seats on airline 1 and ‘y’ seats on airline 2.  In the second to last period (pe-

riod 2), each airline is equally likely to receive a request for its intraline itinerary with associated 

revenue of $250.  In the final period, airline 1 receives a request for an interline itinerary for 

$400 with probability one.  Clearly, it would be best for the alliance if the airline receiving the 

intraline request were to turn it down, leaving its inventory for the interline itinerary.  

Table 1 – Data for counter-example to transfer pricing optimality 

Period, k Itinerary, Aj Marketing Airline Revenue Probability 

2 (1, 0)  

(0, 1)  

Airline 1 

Airline 2 

$250 

$250 

0.5 

0.5 

1 (1, 1)  Airline 1 $400 1 

Let p be the transfer price in the final period paid to airline 2 if there is sufficient inventory 

remaining.  Therefore at the beginning of period 2 the opportunity costs of the intraline inventory 

for airline 1 and airline 2 are ($400 – p) and p, respectively.  Because each intraline request can 

be fulfilled without any of its partner’s inventory, each airline would maximize its own value by 

accepting an intraline request if its revenue exceeds its opportunity cost of its inventory (see 

Theorem 1 below for a formal proof of this behavior.)  Thus, to prevent either airline from filling 

an intraline request, p must satisfy both p > $250 and $400 – p > $250, or $250 < p < $150, 

which is a contradiction. 
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Note that network optimality could be guaranteed if payments are made for intraline itinera-

ries as well as interline itineraries.  For example, assume that the airlines set p=$100.  Then, in 

period 2, let airline 1 offer $151 to airline 2 if airline 2 agrees not to sell the intraline ticket if a 

request for that ticket arrives.  Given such a subsidy scheme, neither airline will accept an intra-

line request and the network is optimized.  Such transfer payments for intraline tickets, however, 

are impossible to implement for a variety of technological, competitive, and legal reasons. 

Although no realistic Markovian transfer-price scheme is universally optimal, certain 

schemes have intuitive appeal.  For example, some practitioners have suggested that a seat’s op-

portunity cost (sometimes called its bid price) would be a logical transfer price (Vinod, 2005).  

While we will analyze each transfer price scheme separately, there are some common results 

worth noting.  These results hold for all the schemes (static and dynamic) analyzed below.  The 

results will also provide us with more general insights into why any transfer price scheme can 

fail to achieve first-best. 

THEOREM 1. For the Markov game described in §5.1, there exists a unique, pure strategy 

Markov perfect equilibrium in which the marketing airline adopts the policy, 

( ) ( ) ( )
⎩
⎨
⎧ +Δ≥

=
−

−

.0
 , if1

; 1

otherwise
xpAxJr

xru
cj

k
jc

kcj
k

KK
K

 

PROOF. See Appendix 1. 

Theorem 1 shows that the marketing airline will accept any request that provides it with net 

revenue that exceeds its opportunity cost of the inventory used in the itinerary.  The net revenue 

is the revenue received from the external customer for the itinerary minus any transfer price paid 

to the operating airline. 

The counter-example presented above illustrates an adverse consequence of the result in 

Theorem 1.  Since there is no transfer price paid for the sale of an intraline itinerary, each airline 

makes intraline decisions without considering that decision’s effect on its partner’s revenue.  

Therefore, even if a centralized controller were to make all interline acceptance decisions (re-

moving decision rights on interline itineraries from the marketing and operating carriers), the 

choice of the revenue-sharing method for interline itineraries would still affect the purely intra-
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line decisions of the partners.  This point is emphasized in the following corollary and subse-

quent discussion. 

Corollary 1. The equilibrium control for intraline requests is of the form: 

( ) ( )
⎩
⎨
⎧ Δ≥

= −

.0
,1

; 1

otherwise
AxJr

xru
jc

kcj
k

KK
 

PROOF. Immediate from Theorem 1 and ( ) .for   0 c
cj

k Njxp ∈=− K
 

The critical revenue level for the Airline c’s intraline decision is its own opportunity cost of 

the inventory used for the itinerary, much like the optimal decision for a single airline.  In this 

case, however, the optimal (centralized) decision for the alliance – shown in Proposition 1 – is 

determined by the total opportunity cost of the itinerary of both partners.  That is, the critical 

value should be:  

( ) ( ) ( )jc
k

jc
k

j
k AxJAxJAxJ ,,, 111

KKK −
−−− Δ+Δ=Δ  

We refer to ( )jc
k AxJ ,1
K−

−Δ , the effect of the change in one airline’s (here, the marketing air-

line’s) inventory on its partner’s value, as the second-order effect.  We refer to ( )jc
k AxJ ,1
K

−Δ , the 

effect on the airline’s own value, as the first-order effect.  Our intuition is that inventory has a 

positive value, however, a simple example demonstrates that second-order effects – which cor-

respond to the partner’s value of the inventory – can be either positive or negative. 

Consider the alliance shown in Figure 1, in which airline 1 operates flights A and B, while 

Airline 2 only operates flight C.  Airline 1 offers itineraries AB and B (both intraline), and airline 

2 offers AC (an interline itinerary).   

 Airline 1                         Airline 2 

Figure 1 – Sample alliance for control comparisons 

Flight A 

Flight B 

Flight C 
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Looking at the second-order effect (that on airline 2) of the sale of airline 1’s itineraries, we 

expect oppositely signed values.  The sale of a B itinerary frees up (in expectation) the A inven-

tory needed by airline 2 to fill an AC request, so we expect a negative opportunity cost for Air-

line 2.  That is, airline 2 is better off if airline 1 sells a B itinerary.  Conversely, a sale of an AB 

itinerary uses up A inventory, so we expect a positive opportunity cost for airline 2; airline 2 is 

worse off if airline 1 sells an AB itinerary.  Formally, we expect:  

( ) ( ) 0,  and  0, 2
1

2
1 >Δ<Δ −−

AB
k

B
k AxJAxJ KK

 

Therefore, Airline 1 will overvalue its B itineraries, not selling them when it would benefit 

the alliance to do so, and under-value its AB itineraries, selling them when it does not benefit the 

alliance.  Figure 2 illustrates the effect of these decisions on expected alliance revenue.  The 

straight lines (horizontal and diagonal) are alliance values, given that the itinerary request is ac-

cepted (“Sale”) or rejected (“No Sale”).  The bold lines indicate the acceptance policies in the 

decentralized alliance, and alliance losses are shown in gray. 

  

While no transfer price scheme can guarantee that the second-order effect will be incorpo-

rated in each airlines’ intraline decision-making, we will show in §5.5 that certain transfer-price 

( ) ( ) 0,2
1 >Δ −

j
k AxJa K

 

Figure 2 – Loss of potential revenue from inefficient intraline itinerary acceptance policies   
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schemes can indirectly reduce the impact of ignoring second-order effects, leading to more effi-

cient intraline decisions. 

5.3. Static Proration 

In practice, revenue sharing for interline sales is often governed by static proration (SP) con-

tracts that prorate the revenue received from an accepted request according to fixed proportions.  

(Such contracts are often enforced via relatively infrequent, ex-post sharing of revenue informa-

tion, so that the model formulated here is consistent with the information-sharing assumption de-

scribed at the end of §3.2).  One form of static proration specifies how revenue should be split 

for each and every itinerary.  If airline c is the operating airline and carries a customer who paid 

the marketing airline r for itinerary j, airline c receives α cjr as a transfer payment while the mar-

keting airline retains (1 – α cj)r in revenue.  To simplify the notation we will assume that α -cj = 

(1 – α cj), so in this case the marketing airline –c’s share of the revenue is α -cjr for itinerary j.  

We will refer to this form of static proration as Itinerary-Specific SP. 

In practice, airlines sometimes use a common proration rate for multiple itineraries.  The 

most extreme version uses a common (or universal) proration rate α  for all itineraries.  We ex-

amine two types of universal schemes, one based on the identity of the marketing airline and 

another that fixes the proportion for each airline and ignores whether an airline is the marketing 

or operating carrier.  First, under ‘Universal SP (Marketing),’ the marketing airline receives (1 – 

α ) r while the operating airline receives α r. In the analysis below it will be useful to associate a 

proration rate with a particular airline c, so under Universal SP (Marketing), α c =α  if c is the 

operating airline and α c =(1 – α )  if c is the marketing airline.  Second, under ‘Universal SP 

(Airline-specific)’, we assume that airline 1 receives α r and that airline 2 receives (1 – α ) r.  

Therefore, α c =α  if c=1 and α c =(1 – α )  if c=2.  Table 2 summarizes the transfer prices paid to 

the operating airline under the static proration schemes. The table also summarizes the dynamic 

transfer price schemes that will be described in detail in §5.4 
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Table 2 – Summary of Transfer prices paid to operating airline c 

 
Static Proration (SP) Dynamic Transfer Prices 

Itinerary-Specific SP cj
k

cj R−α  Bid Price (full value) ( )jc
k AxJ ,1
K

−Δ  
Universal SP (Marketing) cj

kR −α  Bid Price  
(partial value) 

( )cjc
k AxJ ,1
K

−Δ  

Universal SP 
(Airline-specific) 

cj
kR −α  to Airline 1 and  

cj
kR −− )1( α  to Airline 2 

Bid-price Proration ( )
( )

cj
kj

k

jc
k R

AxJ
AxJ −

−

−

Δ
Δ

,
,

1

1 K
K

 

 Partner Price Chosen by the op-
erating airline  
(see Theorem 4) 

 

Note that distinctions among the three static proration schemes will be relevant in the numer-

ical examples described in §6.  The results in this Section, however, apply to all three static 

schemes.  For convenience we use the proration term α cj throughout the following analysis, al-

though for the universal schemes the ‘j’ can be eliminated. 

THEOREM 2. For the marketing airline, the equilibrium interline acceptance policy un-

der a static proration scheme is: 

 ( ) ( )
⎩
⎨
⎧ Δ≥

= −

otherwise.0
, if1

; 1
cjjc

kcj
k

AxJr
xru

αK
K  

PROOF. See Appendix 1.  
 

The interline acceptance policy in Theorem 2 ensures that the marketing carrier earns at least 

its opportunity cost of the inventory used. Given static proration and the model formulation in 

(3), however, an interline itinerary may be accepted when its total revenue is less than the operat-

ing airline’s opportunity cost of its seats, and less than the full alliance’s opportunity cost as well. 

An obvious modification would be to give the operating airline, as well as the marketing air-

line, a veto over the sale of interline itineraries.  
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THEOREM 3. Under a static proration scheme, if both the marketing and operating air-

line may veto a sale, then in equilibrium an interline itinerary is sold only 

if: 

 ( ) ( ) ( ){ }cjjc
k

cjjc
k

cj
k AxJAxJR αα −ΔΔ≥ −

−− 1,,,max 11
KK  

PROOF. See Appendix 1.  

The acceptance criteria in Theorem 3 guarantees that no request is accepted that would hurt ei-

ther partner, but increasing the likelihood that some requests that are profitable for the alliance as 

a whole will be rejected.  Under the widely-used free sale system both partners have the power to 

accept or reject a sale, and therefore we focus on this modified model for the remainder of this 

Section and for the numerical experiments in §6. 

Now define a centrally optimal decision as a decision in period k, given inventory xK , that 

would be optimal for the centralized system in that state.  Note that centrally optimal interline 

decisions may not necessarily be optimal for the decentralized network because in the decentra-

lized network, the intraline decisions may not be centrally optimal.  

COROLLARY 2.  Under a static proration scheme the decentralized alliance will make the cen-

trally optimal interline acceptance decisions in equilibrium if, 

 
( )
( )j

k

jc
kcj

AxJ
AxJ

,
,

1

1 K
K

−

−

Δ
Δ

=α . 

PROOF. After substituting this 
cjα  into the acceptance rule in Theorem, both terms in the max-

imization become ( )j
k AxJ ,1
K

−Δ , the critical value in centralized control. □ 

Corollary 2 suggests that a static proration scheme will perform well if the proration rates are 

chosen such that  
 ( ) ( )j

K
jc

K
cj AxJAxJ ,, KK ΔΔ≈α  (4) 

and if the ratio of opportunity costs is relatively stable for most demand realizations. 

We term the ratio on the right-hand side of Corollary as airline c‘s value ratio for itinerary j 

in period k.  The right hand side of (4) is the value ratio at the start of the horizon.  It is important 

to note that this ratio is actually a function of the proration rates αcj, so a solution to (4) is a fixed 

point of the value functions .c
KJ  
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Static schemes are simple to implement, requiring relatively little information to be ex-

changed among partners after the initial proration-rate negotiation.  In addition, by splitting the 

itinerary’s revenue between the partners, such schemes do account for the changing values gen-

erated by entire itineraries. Theorem 3, however, identifies the flaw in any static scheme: the rel-

ative value of seats between the two partners may change over time, and the static policy does 

not account for these changes.  There are additional barriers to truly effective implementation of 

static policies.  Finding the appropriate proration ratios for all individual itineraries can be a 

daunting task: since the value functions c
KJ  depend upon the entire set of nS proration ratios, the 

system must be optimized over a continuous space with dimension [ ] Sn1,0 , where nS  may be in 

the thousands.  In addition, even if a small set of proration rates seems to work well across a par-

ticular network, static schemes have no internal mechanism to adjust for changing network pa-

rameters.  For example, arrival rates and revenue distributions can change dramatically over 

time.  After a significant change the proration rates must be reoptimized and the alliance contract 

negotiated.  We will observe the impact of such changes in §6. 

We now make one final point about the performance of static proration under a special case: 

COROLLARY 3. When the alliance is composed entirely of interline itineraries, it can 

achieve first-best revenue by using static proration. 

PROOF. See Appendix 1.  

Note that Corollary 3 holds for all three forms of static proration described above if the proration 

rates are chosen correctly.  For Universal SP (Airline-Specific) any proportion will work.  For 

Universal SP (Marketing), the proportion must be 0.5, while for Itinerary-Specific SP, all itinera-

ries must share the same proportion. 
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5.4. Dynamic Transfer Prices 

In this section we examine three revenue sharing schemes that dynamically change transfer 

prices to reflect the state of the system.  These schemes are (i) bid price: each airline simply 

charges its current opportunity cost, or “bid price”, of the seats in question, and therefore the 

marketing airline retains all revenue in excess of its partner’s current bid price; (ii) bid-price pro-

ration: the transfer price is adjusted so that the operating airline receives a share of the consumer 

revenue that is equal to its value ratio for the itinerary in question; and (iii) partner price: each 

airline strategically chooses a price for its inventory that its partner must pay to use its sub-

itinerary as part of an interline itinerary. 

5.4.1. Bid Price Scheme 

Under the bid price scheme, each airline posts its true opportunity cost (the bid price) for 

each interline itinerary in the alliance.  If the marketing airline chooses to accept a request, then 

it must pay its partner the bid price as its transfer price, keeping any remaining revenue for itself. 

Conceptually, in the bid price scheme, the operating airline’s value is unaffected by an interline 

sale, as it is exactly compensated for the change in its inventory level.  For now, we assume that 

the transfer price equals the operating airline’s opportunity cost of all inventory sold in the itine-

rary.  That is:  

 ( ) ( ) ( ) ( )cjcjc
k

cjc
k

jc
k

cj
k AAxJAxJAxJxp −

−−− −Δ+Δ=Δ= ,,, 111
KKKK

 (5) 

where cjcj AA − and  are the required sub-itineraries of itinerary j on airline c’s and –c’s networks 

respectively. 

The first term on the right-hand side of (5) is the first-order effect of the change in the operat-

ing airline’s own inventory, while the second is the second-order effect of the marketing airline’s 

change in inventory on the operating airline given that the first change has already been made.  

We will refer to this transfer price as a full value bid price. 

THEOREM 4. The equilibrium interline acceptance policy for a bid price scheme is centrally op-

timal if a full value bid price is used.  The critical value in this case is: 

( ).,1
j

k AxJ K
−Δ  
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PROOF. Addition of the critical acceptance policy and the transfer price, and application of 

Theorem 1 and Proposition 1. □ 

Theorem 4 shows that the bid price scheme places no premium on the alliance’s opportunity 

cost, so its interline acceptance decisions are efficient (i.e., centrally optimal).  However, we will 

show in §5.5 that use of a bid price scheme can lead to inefficient intraline acceptance decisions, 

and these inefficient decisions may reduce total alliance revenue across the horizon. 

There are a few implementation issues associated with the bid price scheme.  The most im-

portant may be the problem of monitoring to ensure honest posting of bid prices.  We will dis-

cuss this issue in Section 5.4.3.  Another implementation issue is the choice of bid prices to use.  

In the analysis above, we assumed that airlines agree to post their full opportunity costs for each 

sub-itinerary.  An alternative choice, previously suggested in Vinod (2005), would be to use only 

the operating airline’s opportunity cost of its own inventory in the itinerary; i.e., neglecting the 

second term in (5).  That is:  

( ) ( ) ( ) ( )cjcjc
k

jc
k

cjc
k

cj
k AAxJAxJAxJxp −

−−− −Δ−Δ=Δ= ,,, 111
KKKK

. 

This choice leads to inefficient acceptance decisions for interline itineraries, for it ignores the 

second-order effects of the marketing airline’s change in inventory.  

Another issue is how to handle the case when the operating airline’s opportunity cost is nega-

tive.  Strict adherence to the policy would require the operating airline to post its true opportunity 

cost and, thus, subsidize the marketing airline’s sales.  The operating airline would therefore pay 

the marketing airline to take its own inventory.  It is unlikely that Airlines would be willing to 

agree to this method, and a logical alternative would be to simply post a zero price in place of 

any negative value.  Doing so will produce inefficient interline acceptance decisions.  In the nu-

merical experiments of §6 we will use exact, full-value transfer prices for the bid price scheme 

and will allow negative transfer prices. 

5.4.2. Bid-Price Proration Scheme 

In the bid-price proration scheme, as in the bid price scheme, each airline posts its current 

opportunity cost for each interline itinerary that its partner sells.  However, unlike the bid price 

scheme, if the marketing airline chooses to accept a request, then the revenue received is pro-
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rated by the value ratios of each airline.  Specifically, the operating airline (airline c here) rece-

ives, 
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while the marketing airline retains  
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The marketing airline is free to fill the itinerary as long as the operating airline’s share of the 

revenue exceeds its posted opportunity cost. 

THEOREM 5. The equilibrium interline acceptance policy for the bid-price proration scheme is 

centrally optimal with critical acceptance values: 

( ).,1
j

k AxJ K
−Δ  

PROOF. See Appendix 1. 

Theorem 5 shows that under the bid-price proration scheme, the airlines respond to interline 

requests in a manner identical to their response under the bid price scheme: the interline requests 

are accepted if and only if it benefits the alliance to do so. 

When the revenue associated with the request exactly equals the total opportunity cost of the 

partners – i.e., when there is no surplus revenue – then the bid-price proration scheme gives each 

partner the same revenues as the bid price scheme.  However, unlike the bid price scheme, when 

the surplus revenue is greater than zero, each partner receives a share of the revenue proportional 

to its relative opportunity cost.  The operating airline’s share can beneficially affect its decisions 

for intraline itineraries, resulting in higher revenues over the horizon than with the bid price 

scheme (see §5.5).  

The bid-price proration scheme also has implementation issues similar to those described for 

the bid price scheme.  However, because proration rates are used to calculate transfer prices, the 

impact of zero and negative opportunity costs requires even more attention.  A typical revenue-

sharing arrangement would require these proportions to be between 0 and 1.  Because opportuni-
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ty costs can be negative, however, it is possible for the proportions to be negative, greater than 1, 

or even infinite if the two opportunity costs add to zero.  Therefore, it is impractical to imple-

ment the scheme exactly as described in equations (6) and (7) and the partners must agree on me-

thods to handle extreme cases.   We propose two methods.  The first method, like the bid price 

scheme, would replace negative opportunity costs with zero and 'round' the proration rates to 0 or 

1, ensuring that payments fall between 0 and r.  The second method would require an airline with 

a negative opportunity cost to subsidize its partner by exactly that amount instead of by an 

amount proportional to r, leading to payments in excess of r, or payments in the 'wrong direction' 

(i.e., the operating airline pays the marketing airline to use its seats).  We use this second method 

in the numerical experiments of §6. 

5.4.3. Partner price Scheme 

In the partner price scheme, each airline posts a dynamically updated list of transfer prices 

for each interline itinerary that its partner offers for sale.  The partner price scheme can be used 

as a model of an actual contract that gives the operating airline the power to set transfer prices.  It 

is also important to see the partner price scheme as a model for a bid price scheme in which the 

partners ‘game’ the system and are untruthful about their bid prices.  We will see here that if bid 

prices cannot be monitored, each partner has an incentive to post higher prices than its actual bid 

prices.  In our numerical experiments we will see that such ‘gaming’ of a bid price scheme can 

reduce alliance revenue.  We will also see that for certain networks the inflation of bid prices can 

actually increase alliance revenue. 

Now we discuss implementation details of our partner price scheme.  Our model is consistent 

with the timing of two scenarios: either all transfer prices are set at the beginning of each period, 

or the operating airline generates a transfer price on-demand when the marketing airline makes a 

particular request.  These transfer prices are based on the distribution of the revenues offered to 

the marketing airline because the operating airline does not know the actual realization of the 

revenue associated with a request (see the discussion at the end of §3.2).  The marketing airline, 

upon receiving a request, bases its acceptance decision on the realized value of the revenue and 

the posted transfer price.  Note that the operating airline’s problem is to find the best transfer 

price for a ‘take it or leave it offer’, one of the “Greed and Regret” problems described by Sheo-

puri and Zemel (2006). 
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For the following theorem, define ( ) ( ) ( )rFrfrh cj
k
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k
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k
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k = .  Function 
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kg is often called the generalized hazard rate function of cj

kF . 

THEOREM 6. The equilibrium transfer price policy for each itinerary satisfies: 
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If the distribution of cj
kR−  has Increasing Generalized Failure Rate (IGFR), i.e., 

( )rg cj
k
−  is non-decreasing, then the transfer price is guaranteed to be unique. 

PROOF. See appendix 1. 

Theorem 6 shows that the transfer price set by the operating airline (here, airline c) equals its 

opportunity cost for the itinerary plus a premium equal to the reciprocal of the hazard rate of the 

itinerary’s revenue evaluated at the threshold value of the marketing airline’s acceptance deci-

sion: the sum of the marketing airline’s opportunity cost and the transfer price. Uniqueness of the 

transfer price is then guaranteed if the revenue distributions have increasing generalized failure 

rate (IGFR), as is the case for the normal, uniform, exponential, beta and many other distribu-

tions.  The size of the premium chosen by the operating airline balances the increase in revenue 

received for each request accepted by its partner with the decreasing probability that the net rev-

enue will be sufficiently high for its partner to accept.   

Corollary 4. The equilibrium acceptance policy under a partner price scheme has an accep-

tance threshold value, 

( ) ( ) ( )( )xpAxJhAxJ cj
k

jc
k

cj
k

j
k

KKK −
−− +Δ+Δ ,1, 11 . 

PROOF. Addition of the critical acceptance and transfer pricing policies, and application of 

Theorem 1.□ 
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Note that the strategic premium chosen by the operating airline to maximize its own expected 

revenue causes the marketing airline to make interline acceptance decisions that are not centrally 

optimal.  The marketing airline will decline a request that would be beneficial to the alliance be-

cause the net revenue it receives does not fully compensate it for the opportunity cost of the in-

ventory used. Figure 3 shows the expected revenue for the marketing (“M”) and operating (“O”) 

airlines with no premium versus a positive premium. 

  

While the premium leads to inefficient acceptance decisions for interline itineraries, we will 

show in the next section that the premium may provide indirect benefits by improving intraline 

acceptance decisions. 

5.5. Benefits of Surplus Sharing 

Although the strategic premium in the partner price scheme can lead to inefficient interline 

decisions, the use of such a scheme may produce higher expected revenue over the horizon than 

other revenue-sharing alternatives.  To see why, consider the example presented in table 3. 

( ) premium Noa  

Figure 3 – Alliance value under the partner price scheme.  The shaded areas are the expected surplus revenue 
received by the marketing (M) and operating (O) airlines. 
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Table 3 – Data for example illustrating benefit of premiums. 

Period, k Itinerary, Aj Marketing Airline Distribution of cj
kR  Probability, cj

kq

3  (0, 1)  Airline 2 U[50, 150] 1 

2 (1, 1)  Airline 1 U[500, 1500] 1 

1 (0, 1) Airline 2 U[25, 75] 1 

In period one, airline 2 receives a request for its intraline itinerary with expected revenue of $50 

with probability one.  If it has the required seat, it will always accept since its opportunity cost is 

$0 in this period, giving an opportunity cost in period 2 of $50.  With the bid price scheme, air-

line 1 would accept its interline itinerary request for any revenue greater than $50 (sum of the 

opportunity costs), paying airline 2 exactly its $50 opportunity cost.  In period 3, airline 2 would 

then accept any request with revenue greater than $50 – the opportunity cost of its intraline in-

ventory in period 3 – so it would sell its last seat, preventing the alliance from selling the valua-

ble interline itinerary in period 2.  The expected revenue for airlines 1 and 2 under this scheme is 

$0 and $100, respectively, with total expected revenue for the alliance of $100. 

Under the partner price scheme, the transfer price charged by airline 2 in period 2 will be 

$775, leading to an acceptance level of $775 for airline 1 and an opportunity cost of $576 for air-

line 2 in period 3.  As a result, airline 2 would not sell its intraline itinerary in period 3, leaving 

the inventory for sale by airline 1 in period 2.  The expected revenue for each airline with this 

scheme is $273 and $576, with total expected revenue for the alliance of $839. 

This example illustrates the benefits to the alliance of allowing its partner to share in the sur-

plus revenue it receives for interline itineraries.  Since airlines will ignore second-order effects 

when making intraline decisions, an airline that receives only its own opportunity cost for inven-

tory under the bid price scheme will under-value its inventory when, in the future, that inventory 

might be used by its partner to fill a valuable interline request.  When operating airlines receive a 

portion of the expected surplus revenue, they consider the benefit of these future interline sales 

and (at least partially) account for alliance opportunity costs when making intraline decisions. 

The choice between partner price and bid price is, therefore, a tradeoff between the cost of 

inefficient interline decisions and the benefit of surplus sharing, which helps to convey informa-

tion that leads to better intraline decisions.  The bid-price proration scheme maintains the effi-
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cient interline decisions of bid price while providing some of the information sharing of partner 

price.  The relative costs and benefits of each scheme depend greatly on the parameters of the 

alliance, as illustrated in §6.  

5.6. Revenue Allocation 

Here we discuss briefly the implications of each dynamic transfer price scheme on the alloca-

tion of revenue between alliance partners.  The relative level of revenue received by the operat-

ing airline for an interline request will be higher under a partner price scheme than under a bid 

price scheme.  In the partner price scheme, the operating airline is given more decision rights – it 

chooses the premium that benefits it the most.  Therefore, it extracts a portion of the surplus rev-

enue that the marketing airline is able to retain completely under the bid price scheme.  The bid-

price proration scheme also provides the operating airline with a portion of the surplus revenue.  

Because the revenue is split according to the value of the inventory provided by each partner, it 

might be argued that this is a ‘fair’ distribution.  But bid-price proration sharing, like partner 

price sharing, does not reward the marketing airline for generating interline requests  

5.7. Computational Limitations 

Given that the revenue management of a single airline network of realistic size requires the 

adoption of approximation methods (see Talluri and van Ryzin, 2004), computation limitations 

place tight restrictions on the size of the alliance problem that can analyzed using the full dynam-

ic program described above.  For example, the size of the dynamic program’s state space for an 

alliance comprised of two equally-sized airlines would be roughly the square of the size of the 

separate single-airline problems.  Therefore, an important step from theory to practice will be the 

development of approximation methods for solving the alliance problem.  The interaction of the 

partners within the game framework may preclude the direct use of existing approximation me-

thods, or the application of existing methods may require significant transformations of the al-

liance problem described above. 

6. Numerical Examples 
To illustrate several of the effects discussed above, we examine the impact of each revenue-

sharing scheme on a set of sample alliances.  In §6.1 we examine the relative performance of the 
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three dynamic transfer-pricing schemes analyzed in §5 for two small alliances – one symmetric 

and one asymmetric – under changing system parameters.  Then, in §6.2, we compare the per-

formance of the best dynamic scheme, the partner price scheme (which can be interpreted as a 

dynamic bid price scheme with untruthful partners) and the three static schemes.  As discussed in 

in §5.7, computational requirements limit the size of the problems that we could analyze.  While 

the small sizes of these examples do not allow us to make definitive statements about the per-

formance of these schemes in real-world networks, the examples do highlight the fundamental 

points discussed above. 

6.1. Relative Performance of Dynamic Schemes 

In this section we examine two small alliances, in which each airline operates one flight – A 

for airline 1 and B for airline 2 – with 10 seats each. The time horizon has 30 periods.  Revenues 

are normally distributed and increase stochastically as the time to departure approaches.  See 

Appendix 2 for detailed information on the parameters.  

The first example that we examine is a balanced (symmetric) alliance.  Each partner sees the 

same demand distribution for its intraline itinerary (itinerary A or B) and an equal share of the 

interline requests (AB).  The revenue distributions associated with the intraline and the interline 

requests are the same for both partners.  



 

 35

Figure 4 – Percent of first-best total revenue in sample symmetric alliance. 
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Figure 4 shows the results for this symmetric alliance as the proportion of intraline requests 

verses interline requests grows.  The vertical axis represents the alliance revenue as a percent of 

the first-best revenue.  At the far left, customers only request interline itineraries, so the two 

schemes that make efficient interline decisions – the bid-price proration scheme and the bid price 

scheme – perform optimally.  The inefficiencies of the partner price scheme, or alternatively the 

effects of cheating under the bid price scheme, are also clear.  Because each partner behaves in 

its own self-interest, transfer prices are too high and alliance revenues suffer.  As in the Prison-

er’s Dilemma, this produces lower revenues for each partner because total alliance revenue is 

split 50/50 in this symmetric alliance. 

On the far right, the alliance is receiving only intraline requests and therefore behaves as two 

separate airlines making individually optimal decisions.  Because no interline requests are re-

ceived, the choice of sharing scheme does not affect the total value and all schemes perform op-

timally.  Finally, in the region between these two extremes, we see that the inefficiencies in both 

intraline decision-making and the handling of interline requests reduce the performance of each 

scheme. 
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To further illustrate the benefits of surplus sharing discussed in §5.5, we now consider an 

asymmetric alliance in which only airline 1 receives requests for its intraline itinerary (A), while 

both airlines may receive requests for the interline itinerary (AB).  Figure 5 shows the effects on 

alliance value as the fraction of interline requests received by airline 1 moves from zero to one.  

Figure 6 shows the percentage of alliance revenue extracted by airline 1 for each scenario shown 

in Figure 5.   

At the far left of Figures 5 and 6 airline 1 receives all intraline requests while airline 2 rece-

ives all interline requests.  We see in Figure 5 that the partner price scheme has the best perfor-

mance while bid-price proration outperforms the bid price scheme.  On the left side of figure 6 

we see that under the partner price scheme airline 1 receives a relatively large proportion of the 

alliance value by choosing a high transfer price.  Bid-price proration balances the contributions 

of both airlines while the bid price scheme awards more of the value generated by the interline 

itineraries to the marketing airline, airline 2. 

The left sides of Figures 5 and 6 reinforce the insight of §5.5: allowing the operating airline 

to set its own transfer price and capture more revenue can improve the performance of the al-

liance as a whole, for it facilitates the sharing of information about the value of inventory.  The 

example also shows that bid-price proration can facilitate such information-sharing, but to a less-

er degree.  We should emphasize, however, that the left side of the figure represents an extreme 

case in which all sales of the high-valued interline itineraries are made by a single airline, as 

might be the case in an alliance between a large international airline and a smaller national air-

line.  When the airlines are closer to being equal partners, as in Figure 4, the partner price 

scheme reduces alliance revenue as well as the revenue of each partner. 

Now, on the far right side of Figure 5, airline 2 does not bring any sales to the alliance, so 

that under the (optimal) bid-price proration and bid price schemes airline 2’s opportunity cost is 

always zero.  Therefore, airline 1 pays nothing, per seat, to airline 2 and captures 100% of the 

revenue (see Figure 6).  The right-hand side of the plot suggests the benefits of the capacity pur-

chase agreements that are typically used for national/regional alliances, in which the national air-

line controls all revenue management activities, collects all revenue, and only pays a fixed price 

(say, a fee per flight) to the intraline alliance partner for its participation (see Shumsky, 2006, for 

more details on these agreements). 
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Figure 5 – Percent of first-best total revenue in sample asymmetric alliance. 

 

Figure 6 – Percent of alliance value captured by airline 1 in the asymmetric alliance. 

 

6.2. Comparing Static and Dynamic Schemes 

Recall from §5.3 that we would expect the effectiveness of the static proration schemes to 

depend upon the amount of variation in the value ratios of interline itineraries, where the value 

ratio is defined in Theorem 3.  Here we describe experiments that compare the performances of 

60% 

80% 

100%

0 0.2 0.4 0.6 0.8 1 

Fraction of Connecting Requests to Airline 1

Bid-Price 
Proration

Partner 
Price Bid-Price 

(Full-valued)%
 o

f a
lli

an
ce

 re
ve

nu
e 

to
 a

irl
in

e 
1

Fraction of Connecting Requests to Airline 1

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

R
ev

en
ue

 (%
 o

f f
irs

t-b
es

t)

Bid-Price 

Bid-Price 
Proration 

Partner 
Price



 

 38

static and dynamic schemes in a series of networks with increasing heterogeneity in the value 

ratios. 

In the sample network for these experiments, airlines 1 and 2 both operate two flights: A and 

B for airline 1, and C and D for airline 2.  All flights have 4 seats remaining, and the time hori-

zon has 20 periods.  Flights A and C travel into a connecting city, while B and D fly out.  There-

fore, there are two connecting itineraries: AD and CB.  For our baseline model, the arrival prob-

abilities and revenue distributions are chosen such that airline 1’s interline value ratios are ap-

proximately 0.58 for both itineraries.  That is, airline 1’s opportunity cost represents 58% of the 

total opportunity cost of the alliance for each of the interline itineraries.  (To be more precise, the 

value ratios depend upon the proration rate used.  The value 0.58 and other value ratios described 

below are generated under the Itinerary-Specific SP scheme, using optimal itinerary-specific pro-

ration rates.  We provide more details on this scheme, below.)  

We induce heterogeneity in the value ratios by increasing (stochastically) the revenues and 

arrival probabilities of each airline’s intraline inbound itinerary, with corresponding decreases in 

each airline’s intraline outbound itinerary.  Specifically, the intraline itinerary revenue distribu-

tions and arrival probabilities are: 
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Figure 7 shows our results when the value ratio heterogeneity factor, β, is increased from 0 to 

1, with all other parameters held constant.  At the extreme right, with β =1, airline 1’s value ra-

tios have diverged from 0.58 up to 0.92 for AD and down to 0.25 for CB.  
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Figure 7 – Percent of first-best under increasing value ratio heterogeneity. 
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enues as incentive to make the right decision for the alliance as a whole.  If the value ratios 

across the alliance are homogeneous (i.e., a given airline’s opportunity cost represents the same 

proportion of the alliance opportunity cost for all itineraries), then a single (‘universal’) proration 

rate can be used effectively.  Specifically, on the left side of Figure 7, a 58% share for airline 1 

for both itineraries is optimal, although the performances of these optimal universal static 

schemes are slightly inferior to the performance of the best dynamic scheme.  As the value ratios 

become heterogeneous, a universal proration rate cannot provide the proper incentives to maxim-

ize alliance revenues. On the right side of Figure 7, the performances of the universal static pro-

ration schemes fall substantially below the best dynamic scheme (bid price) and even well below 

the partner price scheme because the value ratios have diverged. 

This observation applies to both universal static schemes.  In Figure 7 the performance of the 

Universal SP (Marketing) scheme also demonstrates that while such a scheme could be used to 

provide an incentive to each airline to generate demand – an aspect of the problem not captured 

with our model - it fails to provide the proper incentives with regards to revenue management 

decisions. 

Figure 8 – Optimal proration rates for Itinerary-Specific SP under increasing value ratio heterogeneity. 
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As one would expect, the performance of the static scheme can be improved by choosing 

proration rates that are specific to each itinerary, given their value ratios.  Figure 8 shows the op-

timal itinerary-specific proration rates.  In this example, using itinerary-specific rates allows stat-

ic proration to perform significantly better under heterogeneous value ratios, even out-

performing the best dynamic scheme here.  However, as discussed in §5.7, implementation of 

optimal itinerary-specific static schemes is difficult in large networks. 

It should also be noted that the case used in Figure 7 does not include many elements found 

in practice that would be likely to hurt the performance of static schemes.  To keep the number 

of parameters reasonable, in this example we used stationary revenue distributions, while in 

practice itinerary prices would be expected to change over the horizon.  In a large number of ad-

ditional experiments we have found that the bid price and bid-price proration schemes perform 

consistently better than static schemes, and we now focus on the relative robustness of dynamic 

schemes. 

Specifically, the performance of a static proration scheme declines as the characteristics of 

the alliance change, while proration rates are held constant.  Figure 9 illustrates this point.  To 

generate the figure, we first find the optimal proration rates, given β = 0.50, for both Universal 

SP (Airline –Specific) and Itinerary-Specific SP.  Then, we evaluate the performance of the static 

schemes using these proration rates in networks with other value of β.   This scenario could 

represent a change in the system from an initial state (β = 0.50) that had been the baseline envi-

ronment for an alliance agreement. 
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Figure 9 – Percent of first-best when using static schemes that are optimal in a network with  β=0.5 
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SP (Airline-Specific) falls far below the best dynamic scheme, dipping below 85% of first best 

for β=1.  We also see that the itinerary-specific static proration scheme that is optimal when 

β=0.5 performs poorly when value ratio heterogeneity is low, β=0. 

Another method to test the robustness of a static scheme is to use the wrong proration rate for 

a given network.  In reality, there are many reasons why alliance members may choose an incor-

rect rate.  For example, under commonly-used mileage proration agreements, proration rates are 

based on the relative mileage of flight legs in an interline itinerary, an attribute that may not cor-

respond with the actual relative value of inventory (see Boyd, 1998a).   In Figure 10, each curve 

shows the percent of first-best revenue achieved in a network with β = 0.50, under Itinerary-

Specific SP, holding the proration rate for AD constant, and varying the rate for interline itine-

rary CB.  The solid line shows results for the optimal AD proration rate of 77% (from the plot we 

can see that the optimal pair of rates is CB=39% and AD=77%).   
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Figure 10 – Percent of first-best in a network with β=0.5 for values of Airline 1’s revenue share for AD 

 

While a small error (<10%) on either or both proration rates causes a reduction of less than 

2% of first-best revenue, such an error can be sufficient to drop the performance of Itinerary-

Specific SP below that of the best dynamic scheme.  For example, at β = 0.50 in Figure 7, the 

Best Dynamic scheme achieves 98.11% of first-best revenue.  At (87%, 49%) in Figure 10, Itine-

rary-Specific SP falls to 97.93% of first-best revenue.  For more substantial deviations, Itinerary-

Specific SP falls well below 90%. 
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Figure 11 – Percent of first-best with increasing alliance size. 

 

Finally, we examined whether these results are artifacts caused by the small inventory levels 

on each flight.  Figure 11 suggests that this is not the case.  For these experiments we use a net-

work with β = 1.  Inventory levels and the number of periods in the horizon are scaled from 

(2,10) up to (16,80), and Figure 11 shows the percentage of first-best alliance revenues for the 

Universal SP (Airline-Specific), Itinerary-Specific SP and Best Dynamic schemes.  The relative 

performances of the three schemes do not change significantly over this scale range, suggesting 

that similar results may hold for larger, more realistic inventory levels and horizon lengths. 

7. Summary and Further Research 
Airline alliances are selling increasing numbers of interline itineraries, creating the need to 

understand the impact of revenue-sharing mechanisms on alliance network performance.  While 

a few papers in the literature have addressed the broad challenges faced by airline alliances, this 

paper is the first to rigorously analyze the revenue-management behavior of alliance partners un-

der various proration mechanisms.  We began by defining a multi-period, two-airline Markov 

game model of an alliance.  Analysis of the model generated fundamental insights about the al-

liance revenue management problem. We find that no Markovian transfer-price scheme can 
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guarantee optimal (first-best) revenues because the sharing of interline revenue cannot directly 

affect acceptance decisions for intraline itineraries.  We then show that the performance of static 

proration schemes depends upon the homogeneity and stability of the relative values that each 

airline places on the inventory used in interline itineraries.  Dynamic schemes adapt to changes 

in these ‘value ratios,’ but there is no one best dynamic scheme.  Dynamic schemes based on bid 

prices generate (centrally) optimal acceptance decisions for interline itineraries, but can fail to 

provide the operating airline with sufficient incentives to align intraline decisions. This align-

ment problem can be ameliorated by allowing the operating airline to set its own transfer prices 

(or, if the operating airline ‘games’ a bid-price system), but the resulting inflation of transfer 

prices can distort interline acceptance decisions.  

We corroborated each of these insights using numerical experiments in small example net-

works.  The experiments also served to reinforce observations about the advantages and chal-

lenges of implementing the static proration schemes that are currently used in the industry.   In 

one example, we see that a static scheme with optimal itinerary-specific proration rates can 

slightly outperform the dynamic schemes considered here.  Computing these optimal static pro-

ration rates and keeping them current, however, can be an enormous challenge for alliance part-

ners, and our experiments show that the relative performance of the static schemes can decline 

significantly when the network parameters no longer match the proration rates.  

These observations about computational complexity and practical considerations suggest two 

areas on which future research should focus: approximation methods and information asymme-

try.  As noted in §5.7, there has been significant work on approximating the single-airline net-

work revenue management problem because of the problem’s size.  In the single-airline problem, 

methods such as virtual nesting and additive bid prices are used to approximate the opportunity 

costs of an itinerary’s inventory.  It would be natural to examine the impact of using similar ap-

proximation methods in an alliance.   

In addition, in our model we have assumed that the airline partners share demand and reve-

nue forecasts as well as information about current inventory levels.   As such, we assume that 

each can precisely calculate its partner’s value function, which is unlikely even for the smallest 

alliances.  Future research should focus on the effects of relaxing this ‘complete information’ 

assumption. 
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Another extension to our research would be to incorporate more advanced arrival and reve-

nue processes and feedback into our model.  As discussed in §3.2, dependency within the arrival 

stream could be added to the model, perhaps by reformulating the arrival process using a cus-

tomer choice model.  In addition, a closed-loop model could be created to update forecasts as 

demand is realized. 

Finally, in our model the airlines use a free sale scheme to exchange inventory; inventory is 

only exchanged when it is needed to fulfill a specific interline request.   An alternate scheme is 

dynamic trading - called soft blocking by Boyd 1998a – in which partners are allowed to "trade" 

(buy and sell) seats on each other's flights throughout the horizon, shifting inventory to the part-

ner that can use it to create the most value for the alliance.  The potential benefits of dynamic 

trading are obvious, as demonstrated by Boyd 1998b, which describes conditions in which a stat-

ic LP version of the problem can achieve the first-best revenue.  Such a scheme, however, has 

many technical barriers to implementation.  In addition, in a preliminary analysis we have found 

that in a dynamic environment there are many conceptual and computational barriers that make 

airline behavior under dynamic trading difficult to predict.  Describing the performance of dy-

namic trading will also be an interesting area of further research. 
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Appendix 1  Proof of Markov Perfect Equilibrium and corresponding policies for decentra-

lized alliance control schemes. 

THEOREM 1  Given transfer prices )(xp cj
k
− , each carrier’s Bellman equation is given by (3).  The 

optimal control for the marketing airline is defined by  

( ) ( ) ( ){ }uAxJuxprxru jc
k

cj
k

u

cj
k −+−= −

−

∈

KK
1

}1,0{
)(maxarg, . 

With the finite expectation assumption on the revenue distributions, this control can be rewritten 
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which is maximized by the function 
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the acceptance policy described in Theorem 1. 

 Because only one revenue request can arrive within each period, both ( )jc
k AxJ ,1
K

−Δ  and )(xp cj
k
−  

are independent of ( )xu c
k
KK − , airline -c’s acceptance decisions (as a marketing airline) in period k.  

Therefore, the best response acceptance decisions for airline c, ( )xu c
k
KK , are constant with respect 

to the partner’s decisions as a marketing airline.  That is,  

( ) ( )xruuxru cj
k

c
k

cj
k

KKK ;,; =− . 

Because the distribution of cj
kR  is continuous, (8) defines a unique best response by each airline; 

there are no ‘ties’ where ( ) )( ,1 xpAxJr cj
k

jc
k

−
− +Δ= K .   

If the transfer prices are sufficiently large in all cases so that the operating airline will always 

choose to accept a sale, then the marketing airline’s policies ( )xrucj
k

K;  define a unique equili-

brium.  If the operating airline -c may reject a sale, then let ( )xru cj
k

K;ˆ −  be the operating airline’s 

acceptance policy.  An argument identical to the one above shows that the optimal policy for the 

operating airline is, 
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( ) ( )
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Again, for each state of the system, this policy is unique and is independent of the partner’s ac-

tion.  Therefore, the pairs of best responses ( ) ( )[ ]xruxru cj
k

cj
k

KK ;ˆ,; −  define a unique equilibrium.  

This unique equilibrium exists for each subgame defined by each time period and inventory 

state, and therefore these best responses define a unique, pure strategy Markov perfect equili-

brium. ■ 

Although throughout the paper we assume that the distribution of cj
kR  is continuous, if we allow 

a probability mass to exist in the revenue distribution, then one could imagine a mixed-strategy 

equilibrium.  Suppose that the realized revenue ( ) )( ,1 xpAxJr cj
k

jc
k

−
− +Δ= K  has a nonzero proba-

bility, and consider the following optimal mixed strategy: requests are accepted by the marketing 

airline with some probability γ and rejected with probability 1 – γ when that particular revenue is 

realized.   The value to airline c, however, would be unaffected by any choice of γ since the ex-

pected value is the same in both cases.  The independence of the accept/reject decisions would, 

again, ensure that the partners’ decisions would be unaffected as well.  As such, there would be 

no obvious benefit to such a policy and the added complexity is likely to be prohibitive. There-

fore, even if the distribution of cj
kR  is not continuous, one would expect that the airlines would 

play pure strategies.   

THEOREM 2 (Static Proration)  For this scheme, for a given share proportion, αr for airline c, 

the conditional Bellman equations take the form:  
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is independent of the decisions for other interline itineraries in the same period.  Therefore the 

threshold strategy described above yields a Nash equilibrium, and the acceptance rules form a 

Markov perfect equilibrium. ■ 

THEOREM 3 (Modified Static Proration)  Under this scheme, both airlines may veto an interline 

acceptance decision.  If both partners accept an interline itinerary, the marketing airline -c  rece-

ives its share of the revenue, ( ) cj
k

cj R −− α1 , while the operating airline receives cj
k

cj R −α .  By 

Theorem 2, the operating airline will accept the request if and only if ( )jc
k

cj
k

cj AxJR ,1
K

−
− Δ≥α  and 

the marketing airline will accept the request if and only if ( )jc
k

cj
k

cj AxJR ,)1( 1
K−

−
− Δ≥−α .  There-

fore, the combined acceptance rule is, 
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− KK
  ■ 

COROLLARY  3 (Static Proration): Proof by induction.  First, let ( )xHk
K  denote the first-best 

revenues for the alliance in period k with remaining inventory xK .  In period 0, any alliance has a 

value of 0.  For an arbitrary period k – 1, k ≥ 1, make the following assumption:  
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It follows then that: 
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Any interline itinerary will be accepted if:  
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Thus, the alliance makes the same acceptance decision as the centralized controller.  Additional-

ly, since the share of revenues received by airline c is αc, our inductive assumption holds with:  

( ) ( ) { }2,1∈= cxHxJ k
cc

k
KK α   ■ 
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THEOREM 5 (Bid-Price Proration): Assume that airline c has received a request for interline 

itinerary j in period k with a fare of r. Under bid-price proration, the transfer price that carrier c 

must pay if it decides to accept the itinerary request is then: 

( )
( )r

AxJ
AxJ

p j
k

jc
kcj

k ,
,

1

1 K
K

−

−
−−

Δ
Δ

= . 

Provided that this transfer price is used, airline c’s optimal acceptance policy is as given in Theo-

rem 1 and the airlines’ acceptance policies constitute a Markov perfect equilibrium.  Note that 

with this transfer price we have  

( ) ( ) ( )jc
k
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j
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cj
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KKK −
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−
−

−
− Δ≥⇔Δ≥⇔+Δ≥ , 

in other words, the marketing carrier accepts the itinerary if and only if it is beneficial for the al-

liance as a whole, and this is if and only if the operating carrier receives at least its opportunity 

cost in compensation. This proves theorem 5, and also shows that the marketing and operating 

carriers’ interests are aligned when it comes to making interline acceptance decisions.  ■ 

THEOREM 6 (Partner Price): Recall that we assume that the operating carrier knows only the 

distribution of the revenue associated with the request received by the marketing carrier, not the 

actual revenue offered by the prospective passenger. The operating carrier also knows both its 

own and the marketing carrier’s opportunity cost for the itinerary. In this scheme, the operating 

carrier chooses the transfer prices for an interline itinerary request received by the marketing car-

rier. 

For the remainder of the proof, since the operating airline is making the decision of inter-

est we will refer to it as c and the marketing airline as –c.  Thus, the relevant transfer prices es-

tablished by the operating airline are )(xpcj
k .  Given these transfer prices, the marketing carrier’s 

Bellman equation is given by (3) and the optimal control is described in Theorem 1.  Now we 

consider the equilibrium transfer price chosen by the operating carrier. Assume that marketing 

airline -c received a request for interline itinerary Sj N∈  and the operating carrier c has chosen a 

transfer price of  p. Then the conditional (on such a request having been received) expected total 

current and future revenues for airline c are given by 



 

 51

 
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( )jc
k

cj
k

jc
k

cj
k

cj
k

cj
k

jc
k

cj
k

AxJpFAxJpxJ

rdFxpruAxJpxJ

,~,

,,

111

0 11

KKK

KKK

−
−

−
−−

∞ −−
−−

Δ+Δ−+=

−Δ−+ ∫  

Taking the derivative with respect to p gives 

 
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )[ ]jc
k

cj
k

jc
k

jc
k

cj
k

jc
k

cj
k

jc
k

jc
k

cj
k

AxJphAxJpAxJpF

AxJpfAxJpAxJpF

,,1,~
,,,~

111

111
KKK

KKK

−
−

−
−

−
−

−

−
−

−
−

−
−

−

Δ+Δ−−Δ+=

Δ+Δ−−Δ+
 

where ( ) ( ) ( )rFrfrh cj
k

cj
k

cj
k

−−− = . Hence the optimal transfer price cj
kp  satisfies 

( ) ( )( )cj
k

jc
k

cj
k

jc
k

cj
k pAxJhAxJp +Δ+Δ= −

−
−

− ,1, 11
KK

 

Note that the condition of Theorem 3 is equivalent to  
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where ( ) ( )rrhrg cj
k

cj
k

−− =  is the generalized hazard rate function of the itinerary’s revenue distri-

bution ( )rF cj
k
− . The RHS of this last equation decreases from +∞  when ( )jc

k
cj
k AxJp ,1

K
−Δ=  to 1 

when ∞→cj
kp  . Now assume that the distribution of cj

kR −  has Increasing Generalized Failure 

Rate (IGFR), i.e., ( )rg cj
k
−  is non-decreasing.  Given that ( )rg cj

k
−  has a finite expectation, it fol-

lows from Theorem 2 of Lariviere (2006) that ( ) 1lim >−
∞→ rg cj

kr , and hence the operating air-

line’s optimal transfer price is unique. 

 Finally, because there is at most one arrival per period, the optimal pricing and accep-

tance policies for a particular interline itinerary j are independent of other policies for other itine-

raries in the same period.  Therefore the results in this section of the appendix imply that under 

the IGFR assumption, the transfer price policies in Theorem 3 and acceptance policies in Theo-

rem 1 form a Markov perfect equilibrium. ■ 
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Appendix 2 – Table of Parameters for Sample Alliances. 

Parameter Symmetric Alliance Asymmetric Alliance 

Number of periods 30 30 

Number of seats on leg oper-
ated by airline 1 

10 10 

Number of seats on leg  
operated by airline 2 

10 10 

Probability of an arrival 
in each period 1 1 

 

Itinerary A AB B A AB 

Fraction of requests 
For the Symmetric Alliance, 
“intraline” is the fraction of 
requests for A or B, and we 
vary “intraline” from 0 to 1. 

0.5*intraline 1-intraline 0.5*intraline 0.5 0.5 

Share of requests to airline 1 100% 50% 0% 100% varies 

Mean revenue per request 
(last period) 

200 500 200 200 400 

Growth in mean revenue 
over all periods 

20% 20% 20% 20% 20% 

Std dev of revenue  
per request 

20 50 20 20 40 
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