

Prepared by Robert A. Shumsky, Associate Professor of Operations Management, William E. Simon
Graduate School of Business Administration. Copyright © 2003.

A Note on Project Scheduling
July 24, 2003

1. Introduction

The management of large projects requires analytical tools for scheduling activities and
allocating resources. This note describes a set of tools that has proven to be consistently
valuable to project managers. The tools are collectively known as the Project Evaluation
and Review Technique (PERT) and the Critical Path Method (CPM). PERT was
developed by the U.S. Navy and its consultants for the Polaris Missile Project, while the
Critical Path Method was created by DuPont and the Remington Rand Corporation for
the management of large chemical plants. Applications of these tools are pervasive, from
construction to software development.

This note describes the basic concepts and calculations for project scheduling with
PERT/CPM. These include the construction of network diagrams, the calculation of
feasible project schedules, determining the effect of uncertainty on project schedules, and
adjusting schedules to conform to time and resource constraints. The tools are important
for planning a project and for keeping it on track once it has begun.

Throughout this note we will refer to a particular project: the installation of an
information system at a major commercial bank, InterTrust Bank. Once in place, the
system will collect accounting entries generated by banking products such as corporate
accounts and loans. The bank’s present system is operated by a contractor, and once the
new system is up and running it will save contracting costs of $3,000 per week.

Table 1 below describes the project’s activities and expected durations. The system will
be developed and installed by computer programmers, systems analysts, and personnel
from the accounting function. The bank has sufficient programmers and accountants on
staff, but the systems analysts who mediate between the ‘techies’ and the accountants are
in short supply. Currently, only three systems analysts are available to the firm, and the
number of analysts needed for each activity is listed in the table. The table also specifies
immediate predecessors, the smallest possible list of tasks which must be completed
before starting each activity.

A Note on Project Scheduling

 2

 immediate duration systems
 Description predecessors (weeks) analysts

A Specify functional and user interface features - 4 2
B Design and code functional component A 4 2
C Test and debug functional component B 4 2
D Internal audit of functional test C 2 1
E Design and code graphical user interface A 6 1
F Integrate functional component and interface C,E 6 2
G Train accounting personnel on interface E 6 1
H Train personnel on testbed using integrated

system
F,G 4 2

Table 1: Description of InterTrust Information Systems Project

Begin by assuming that the project durations listed in Table 1 are guaranteed, so that they
are not subject to randomness. In Section 5 we will consider the effect of random
activity times on the project.

2. Network Diagrams and Critical Paths

The information in the table may also be represented by a network diagram in which
rectangles, or nodes, signify activities. The relationships between activities are
represented by arrows between the nodes. For the InterTrust project, activities B and E
may begin only after activity A has ended, a relationship represented by:

B

A

E

Figure 1

All arrows to a node begin at the node’s immediate predecessors, indicating that the
activity cannot be started until all activities prior to that node in the network are
completed. Figure 2 displays the complete project network for InterTrust. Activity A
must be completed before activities B and E are started. Activity F cannot be started
until both activities C and E are completed.

A Note on Project Scheduling

 3

B , 4

A , 4 E, 6

C , 4

G , 6

F, 6

D , 2

H , 4 EN D , 0

A ctivity , D uration

K EY

Figure 2: Project Network for InterTrust Information System Project

Since the project itself cannot be completed until all activities are complete, we have
created a ‘dummy’ node, END, with immediate predecessors D and H. One might also
create a dummy BEGIN node if multiple activities could start the project in parallel.

A project manager often begins with the simplest question: how long will the project
last? Once the project network is drawn, the answer is also simple: the duration of the
project is equal to the longest path from the beginning to the end of the network. Since
all activities along this path must be completed, the duration of the project must be at
least the length of the longest path. Since all other paths are shorter, the duration of the
project must be the length of the longest path. For InterTrust, the longest path from ‘A’
to ‘END’ may be found easily by trying all paths (how many are there?) and choosing the
longest. This path is ‘A-B-C-F-H-END’ and its duration is 4+4+4+6+4 = 22 weeks.

For this relatively simple project, there were only a few paths to compare. For larger
projects with thousands of activities, finding the longest paths is difficult unless a
structured method is used. The method described here is one such structured method,
and along the way it derives much useful information besides the length of the project.

2.1 Earliest and Latest Start and Finish Times

For each activity we will calculate the following:

Quantity Abbreviation Description

Earliest Start Time ES Earliest time the activity may begin after allowing
 preceding activities to finish
Earliest Finish Time EF Earliest time the activity may finish after allowing
 preceding activities to finish

A Note on Project Scheduling

 4

Latest Start Time LS Latest time the activity may begin without delaying
 project completion
Latest Finish Time LF Latest time the activity may finish without delaying
 project completion
Activity Slack SLACK Extra time an activity is allowed before it delays
 the project (assuming that it begins at ES). Under
 this definition, “slack” is sometimes also called
 “total slack” or “total float.”

In a network, earliest start and finish times are found by repeatedly calculating from the
beginning of the project (node A) until the end (END). Use the following equations:

Earliest Start time = ES = max[EF of immediate predecessors]
Earliest Finish time = EF = ES + activity duration

For InterTrust, begin with activity A at week ‘zero’. The earliest finish time for A is four
weeks later, and this is the earliest start times for activities B and E. The earliest finish
time for B is 4 + 4 = 8 weeks, and the earliest start time for its successor, C, is 8 weeks.
Figure 3 displays the results of these calculations. One must be careful with activity F
since it has two predecessors. The earliest start time for F is the later of the earliest finish
times of its predecessors:

 ES for activity F = max(EF for activity C, EF for activity E)
 = max(12, 10)
 = 12 weeks

Similar calculations are completed for remaining activities until we reach END. We find
that the project will take 22 weeks.
Latest start and finish times for each activity are found by working backwards, from the
end of the project to the beginning:

Latest Finish time = LF = min[LS of immediate successors]
Latest Start time = LS = LF - activity duration

For END, latest start and finish times are set equal to the earliest start and finish times
since any delay to END will delay project completion. The latest finish time for activity
H is the latest start time for END, 22 weeks, and the latest start time for activity H is 22 -
4 = 18 weeks. The latest finish time for D is also 22 weeks, while the LF for F is the LS
for H, 18 weeks. Activity C has two immediate successors, so:

 LF for activity C = min(LS for activity D, LS for activity F)
 = min(20, 12)
 = 12 weeks

A Note on Project Scheduling

 5

These calculations are repeated until latest times for activity A are found. See Figure 3
for the results.

B, 4, 0

4 8

4 8

A, 4, 0

0 4

0 4

E, 6, 2

4 10

6 12

C, 4, 0

8 12

8 12

G, 6, 2

10 16

12 18

F, 6, 0

12 18

12 18

D, 2, 8

12 14

20 22

H, 4, 0

18 22

18 22

END, 0,

22 22

22 22

Activity, Duration, Slack

KEY

ES Time EF Time

LS Time LF Time

Figure 3: Start and Finish Times and Critical Path for InterTrust

2.2 Activity Slack, Critical Activities, and Critical Paths

The activity slack for each node may be easily calculated:

Activity Slack = SLACK = LS - ES = LF - EF

In any network, there will be activities with zero slack. Any delay to these activities will
produce a delay in the completion of the project as a whole. We call these tasks critical
activities, and a path through the network made up of critical activities is called a critical
path. There will always be at least one critical path, and there may be more than one.
All critical paths have the same length. Not surprisingly, critical paths are the longest
paths through the network and the length of a critical path is equal to the duration of the
project. In Figure 3, critical activities and the critical path for InterTrust are shown in
bold. For this project, the critical path is A-B-C-F-H-END. As we expected, the critical
path is the longest path through the network, and its duration is equal to the duration of
the project.

Some activities, such as D, E, and G, have slack greater than zero. The start times of
these activities may be delayed without affecting the length of the entire project. The
durations of these activities may also be extended without pushing back the project
completion time. However, if delays and extensions exhaust the size of the activity
slack, these activities become critical activities, too.

A Note on Project Scheduling

 6

3. Resource Constraints

An invaluable method for shortening the duration of a project is the ability to run
multiple activities in parallel. For example, the InterTrust project allows both activities B
and E to run in tandem from week four to week eight. If all InterTrust activities were to
occur in series, the project would last 36 weeks rather than 22. A Gantt chart, such as the
one shown in Figure 4, displays the degree of parallelism in the project. The chart
displays the activities beginning at their earliest start times, as well as the number of
analysts needed for each activity.

ACTIVITIES

TIME (IN WEEKS FROM PROJECT START)

0 4 8 12

A
B
C
D
E
F
G
H

16 20 24
Analysts

2
2

2

1
1

2
1

2

Figure 4: Gantt Chart for InterTrust with All Activities at Their Earliest Start Times

However, sufficient resources must be available for activities to be completed in parallel.
If all activities in the InterTrust project were to begin on their earliest start dates, then the
number of systems analysts needed varies from two to four. This is shown in Figure 5,
which is derived from the resource listing in the Gantt chart. Note that the period from
the end of week 12 to the end of week 14 requires four programmers: one for activity D,
two for F and one for G.

t im e (w e e k s f ro m p ro je c t s ta r t)

0

1

2

3

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

#
s y s te m s
a n a ly s ts
n e e d e d

4

Figure 5: Number of Systems Analysts Needed if all Activities Begin on the Earliest Start Dates

Because only three systems analysts are available for the InterTrust project, it appears
that the project violates the resource constraints. One solution to this problem is to

A Note on Project Scheduling

 7

purchase more resources. However, it may be possible to delay activities so that resource
constraints are satisfied. In fact, if a single activity is delayed less than its slack, the
project as a whole will not be delayed. Activities along the critical path cannot be
delayed, but an activity with slack may be delayed without affecting the total project
length.

For InterTrust, activity D has eight units of slack and it may be rescheduled to begin after
16, 17, or even 20, weeks without delaying the project. If activity D begins after week
16, only 3 systems analysts are needed (see Figure 6).

tim e (w eeks from pro ject sta rt)

0

1

2

3

2 4 6 8 10 12 14 16 18 20 22

#
system s
ana lysts
needed

4

Figure 6: Number of Systems Analysts Needed if Activity D is Delayed by Six Weeks

With this small project, we could find a schedule by hand which satisfied the resource
constraints. Scheduling activities so that resource utilization remains as low as possible
is often called ‘smoothing’ the project. With larger projects and multiple resources,
computer-based optimization tools are needed to find a smoothed schedule.

4. ‘Crashing’ a Project to Shorten Duration

For many projects there is a trade-off between project cost and project duration. When a
project lags behind its schedule, extra people may be assigned to the job to speed it up.
Even for an on-time project there may be opportunities to ‘crash’ the project by hiring
personnel or purchasing additional equipment. A manager must asses the costs and
benefits of speeding up the project.

Recall that InterTrust is spending $3,000 per week until its new information system is on-
line. Suppose that there is an opportunity to hire extra programmers to work on activities
B, C, D, and/or G. The available programmers have specialized skills and abilities; one
programmer may be assigned to each task, and relevant data are listed in Table 2. Here
we assume that hiring an extra programmer is an all-or-nothing decision, e.g., if we want
to shorten the duration of activity B we must pay $2,000 for a programmer who reduces

A Note on Project Scheduling

 8

the expected activity time by 3 weeks. In other situations it may be possible to purchase
crashing help ‘by the week.’ To find this variable cost, we would interpolate: the weekly
cost of crashing activity B would be $2,000/3 weeks = $667/week. But, again, we now
assume that the labor costs shown in Table 2 are indivisible.

On first glance, all four programmers would seem to be a good deal. Every week
eliminated from the duration of the project will save $3,000, each programmer costs less
than $3,000, and each will cut at least a week off an activity’s duration.

 Cost of Time Estimates (weeks)
Activity Extra Programmer

($‘000s)
Normal Extra

Programmer
B 2 4 1
C 2.5 4 1
D 2 2 1
G 1 6 1

Table 2: Data for Crashing the InterTrust Project

However, because of the dependence between activities, the benefits of the extra
programmers may be limited. Typically, activities on the critical path should be crashed
since these activities determine the duration of the project. But eventually, these paths
are no longer critical. We are faced with the question: which programmers, if any,
should be hired?

One method for evaluating opportunities to ‘crash’ a project is described by these steps:

A Method for Crashing a Project

Step 1: Assess the cost-effectiveness of crashing activities on the critical paths (it may be

necessary to crash more than one activity to have an effect). If no set of crashes
leads to a net gain, stop;

Step 2: Implement the most cost-effective crash until it is no longer cost effective or the
paths involved are no longer critical;

Step 3: A crash in step (2) may create new critical paths. Revise the network and identify
the new critical paths. Return to step (1).

As an example, consider the InterTrust project and the data in Table 2:

Step 1: Activities B and C are on the critical path for InterTrust. However, if either is

shortened by two weeks then paths ‘A-E-F-H-END’ and ‘A-E-G-H-END’
become critical. Therefore, we save at most 2 weeks by adding a programmer to
either B or C, and the additional programmer for B costs less than the additional

A Note on Project Scheduling

 9

programmer for C. Therefore, crashing activity B is the most cost-effective plan,
saving $6,000 while spending $2,000.

Step 2: Crash activity B by reducing its duration from four weeks to one. Note that
crashing B from four weeks to two would have had the same effect, but we did
not have that option at a lower cost.

Step 3: With activity B crashed, we have the new network shown in Figure 7. There are
two new critical paths.

Step 1: Activity G is the only activity on a critical path available for crashing. However,
crashing activity G will not decrease the duration of the project since path ‘A-E-
F-H-END’ would remain critical and the project duration would not dip below 20
weeks. Therefore, we are done.

B, 1, 1

4 5

5 6

A, 4, 0

0 4

0 4

E, 6, 0

4 10

4 10

C, 4, 1

5 9

6 10

G, 6, 0

10 16

10 16

F, 6, 0

10 16

10 16

D, 2, 9

9 11

18 20

H, 4, 0

16 20

16 20

END, 0,

20 20

20 20

Activity, Duration, Slack

KEY

ES Time EF Time

LS Time LF Time

Figure 7: InterTrust with Activity 'B' Crashed by Three Weeks

Note that an extra programmer for activity G seemed like a bargain: 5 weeks saved for
only $1,000. However, hiring this programmer would not have shortened the duration of
the project.1

In general, crashing a single activity will not shorten the project unless that activity is on
a unique critical path. If there are multiple critical paths, activities on all of them must be
crashed to shorten the project duration.

1 It is possible that an extra programmer for activity G would have liberated other programmers, who
would then have been shifted to activities on other critical paths. You see how complicated this can get!

A Note on Project Scheduling

 10

5. Random Activity Times

In the previous section, dependence between events limited the benefits of extra
resources. This dependence also exacerbates the effect of randomness, so that variations
in project times tend to increase the length of the total project. For InterTrust, we have
assumed that activity durations are known in advance. In practice these durations will be
means, medians, or some other estimate, and the true activity times will vary around
these estimates.

What is the effect of this variation? We have calculated that the original (non-crashed)
InterTrust project will take 22 weeks with no variation in activity times. But if activity
times vary, we can expect the project to take longer than 22 weeks even if the expected
values of individual activities are equal to the numbers listed in Table 1. In fact, for any
project subject to randomness,

Expected project duration

> Project duration calculated from expected durations of individual activities

An example should make this clearer. Suppose that the duration of activity E in the
InterTrust project were uncertain, and the project manager estimated that there was a
50% chance the task would take 2 weeks and a 50% chance it would take ten weeks.
Note that the expected duration is still six weeks, as listed in Table 1. Is the expected
total project duration still 22 weeks?

If activity E lasts two weeks, the project remains 22 weeks long because a reduction in
the duration of a non-critical path does not affect the duration of the project (see Figure
3). If activity E lasts ten weeks, then the path ‘A-E-F-H-END’ becomes critical, and the
project duration is 24 weeks. The expected duration of the project is now (1/2)(22) +
(1/2)(24) = 23 weeks. The expected duration has risen by one week, even though the
expected durations of each individual activity remained the same.

When multiple activities are subject to randomness then it is very difficult to calculate the
expected duration of the project as a whole. Mathematical approximations or Monte
Carlo simulation may be used to find project durations, costs, and resource utilization.2
However, the underlying insight is similar to the insights from The Goal and from
queueing theory.3,4 Deterministic calculations tell only part of the story; statistical
fluctuations (what we have called variability) and dependent events conspire to lengthen
the duration of the projects.

2 A ‘Monte Carlo simulation’ is designed to reproduce the behavior of a system that is subject to
randomness. One input to the simulation is a sequence of random variables, and the simulation’s response
to this random input imitates the response of the real system.
3 E. M. Goldratt and J. Cox, The Goal: A Process of Ongoing Improvement, North River Press Publishing
Corporation; 2nd Revision edition (May 1992).
4 Queueing theory, also known as waiting line theory, helps us to make capacity decisions when demand
and process variability cause congestion.

