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1. Introduction 
 
The management of large projects requires analytical tools for scheduling activities and 
allocating resources. This note describes a set of tools that has proven to be consistently 
valuable to project managers.  The tools are collectively known as the Project Evaluation 
and Review Technique (PERT) and the Critical Path Method (CPM).  PERT was 
developed by the U.S. Navy and its consultants for the Polaris Missile Project, while the 
Critical Path Method was created by DuPont and the Remington Rand Corporation for 
the management of large chemical plants.  Applications of these tools are pervasive, from 
construction to software development.   
 
This note describes the basic concepts and calculations for project scheduling with 
PERT/CPM.  These include the construction of network diagrams, the calculation of 
feasible project schedules, determining the effect of uncertainty on project schedules, and 
adjusting schedules to conform to time and resource constraints.   The tools are important 
for planning a project and for keeping it on track once it has begun. 
 
Throughout this note we will refer to a particular project: the installation of an 
information system at a major commercial bank, InterTrust Bank.  Once in place, the 
system will collect accounting entries generated by banking products such as corporate 
accounts and loans.  The bank’s present system is operated by a contractor, and once the 
new system is up and running it will save contracting costs of $3,000 per week. 
 
Table 1 below describes the project’s activities and expected durations. The system will 
be developed and installed by computer programmers, systems analysts, and personnel 
from the accounting function.  The bank has sufficient programmers and accountants on 
staff, but the systems analysts who mediate between the ‘techies’ and the accountants are 
in short supply.  Currently, only three systems analysts are available to the firm, and the 
number of analysts needed for each activity is listed in the table.  The table also specifies 
immediate predecessors, the smallest possible list of tasks which must be completed 
before starting each activity. 
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  immediate duration systems 
 Description predecessors (weeks) analysts 

A Specify functional and user interface features - 4 2 
B Design and code functional component A 4 2 
C Test and debug functional component B 4 2 
D Internal audit of functional test C 2 1 
E Design and code graphical user interface A 6 1 
F Integrate functional component and interface C,E 6 2 
G Train accounting personnel on interface E 6 1 
H Train personnel on testbed using integrated 

system 
F,G 4 2 

 

Table 1: Description of InterTrust Information Systems Project 
 
Begin by assuming that the project durations listed in Table 1 are guaranteed, so that they 
are not subject to randomness.   In Section 5 we will consider the effect of random 
activity times on the project. 
 

2. Network Diagrams and Critical Paths 
 
The information in the table may also be represented by a network diagram in which 
rectangles, or nodes, signify activities.  The relationships between activities are 
represented by arrows between the nodes.  For the InterTrust project, activities B and E 
may begin only after activity A has ended, a relationship represented by: 

B

A

E

 
Figure 1 

All arrows to a node begin at the node’s immediate predecessors, indicating that the 
activity cannot be started until all activities prior to that node in the network are 
completed.  Figure 2 displays the complete project network for InterTrust.  Activity A 
must be completed before activities B and E are started.  Activity F cannot be started 
until both activities C and E are completed.   
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Figure 2: Project Network for InterTrust Information System Project 
 
Since the project itself cannot be completed until all activities are complete, we have 
created a ‘dummy’ node, END, with immediate predecessors D and H.  One might also 
create a dummy BEGIN node if multiple activities could start the project in parallel. 
 
A project manager often begins with the simplest question: how long will the project 
last? Once the project network is drawn, the answer is also simple: the duration of the 
project is equal to the longest path from the beginning to the end of the network.  Since 
all activities along this path must be completed, the duration of the project must be at 
least the length of the longest path.  Since all other paths are shorter, the duration of the 
project must be the length of the longest path.  For InterTrust, the longest path from ‘A’ 
to ‘END’ may be found easily by trying all paths (how many are there?) and choosing the 
longest.  This path is ‘A-B-C-F-H-END’ and its duration is 4+4+4+6+4 = 22 weeks.   
 
For this relatively simple project, there were only a few paths to compare.  For larger 
projects with thousands of activities, finding the longest paths is difficult unless a 
structured method is used.  The method described here is one such structured method, 
and along the way it derives much useful information besides the length of the project.   
 
2.1  Earliest and Latest Start and Finish Times 
 
For each activity we will calculate the following: 
 
Quantity  Abbreviation Description 
 
Earliest Start Time ES  Earliest time the activity may begin after allowing  
     preceding activities to finish 
Earliest Finish Time EF  Earliest time the activity may finish after allowing  
     preceding activities to finish 
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Latest Start Time LS  Latest time the activity may begin without delaying  
     project completion 
Latest Finish Time LF  Latest time the activity may finish without delaying 
     project completion 
Activity Slack  SLACK Extra time an activity is allowed before it delays  
     the project (assuming that it begins at ES).  Under  
     this definition, “slack” is sometimes also called 
     “total slack” or “total float.” 
 
In a network, earliest start and finish times are found by repeatedly calculating from the 
beginning of the project (node A) until the end (END).  Use the following equations: 
 

Earliest Start time = ES = max[EF of immediate predecessors] 
Earliest Finish time = EF = ES + activity duration 

 
For InterTrust, begin with activity A at week ‘zero’.  The earliest finish time for A is four 
weeks later, and this is the earliest start times for activities B and E.  The earliest finish 
time for B is 4 + 4 = 8 weeks, and the earliest start time for its successor, C, is 8 weeks.  
Figure 3 displays the results of these calculations. One must be careful with activity F 
since it has two predecessors.  The earliest start time for F is the later of the earliest finish 
times of its predecessors: 
 
          ES for activity F = max(EF for activity C, EF for activity E)  
               = max(12, 10)  
               = 12 weeks 
 
Similar calculations are completed for remaining activities until we reach END.  We find 
that the project will take 22 weeks. 
Latest start and finish times for each activity are found by working backwards, from the 
end of the project to the beginning: 
 

Latest Finish time = LF = min[LS of immediate successors] 
Latest Start time = LS = LF - activity duration 

 
For END, latest start and finish times are set equal to the earliest start and finish times 
since any delay to END will delay project completion.  The latest finish time for activity 
H is the latest start time for END, 22 weeks, and the latest start time for activity H is 22 - 
4 = 18 weeks.  The latest finish time for D is also 22 weeks, while the LF for F is the LS 
for H, 18 weeks.  Activity C has two immediate successors, so: 
 
      LF for activity C = min(LS for activity D, LS for activity F)  
            = min(20, 12)  
            = 12 weeks 
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These calculations are repeated until latest times for activity A are found.  See Figure 3 
for the results. 
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Figure 3: Start and Finish Times and Critical Path for InterTrust 

 
2.2  Activity Slack, Critical Activities, and Critical Paths 
 
The activity slack for each node may be easily calculated: 
 

Activity Slack = SLACK = LS - ES = LF - EF 
 
In any network, there will be activities with zero slack.  Any delay to these activities will 
produce a delay in the completion of the project as a whole.  We call these tasks critical 
activities, and a path through the network made up of critical activities is called a critical 
path.  There will always be at least one critical path, and there may be more than one.  
All critical paths have the same length.  Not surprisingly, critical paths are the longest 
paths through the network and the length of a critical path is equal to the duration of the 
project.  In Figure 3, critical activities and the critical path for InterTrust are shown in 
bold.  For this project, the critical path is A-B-C-F-H-END. As we expected, the critical 
path is the longest path through the network, and its duration is equal to the duration of 
the project. 
 
Some activities, such as D, E, and G, have slack greater than zero.  The start times of 
these activities may be delayed without affecting the length of the entire project.  The 
durations of these activities may also be extended without pushing back the project 
completion time.  However, if delays and extensions exhaust the size of the activity 
slack, these activities become critical activities, too. 
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3. Resource Constraints 
 
An invaluable method for shortening the duration of a project is the ability to run 
multiple activities in parallel.  For example, the InterTrust project allows both activities B 
and E to run in tandem from week four to week eight.   If all InterTrust activities were to 
occur in series, the project would last 36 weeks rather than 22.  A Gantt chart, such as the 
one shown in Figure 4, displays the degree of parallelism in the project.  The chart 
displays the activities beginning at their earliest start times, as well as the number of 
analysts needed for each activity. 
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Figure 4: Gantt Chart for InterTrust with All Activities at Their Earliest Start Times 

 
However, sufficient resources must be available for activities to be completed in parallel.  
If all activities in the InterTrust project were to begin on their earliest start dates, then the 
number of systems analysts needed varies from two to four.  This is shown in Figure 5, 
which is derived from the resource listing in the Gantt chart.  Note that the period from 
the end of week 12 to the end of week 14 requires four programmers: one for activity D, 
two for F and one for G.   
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Figure 5: Number of Systems Analysts Needed if all Activities Begin on the Earliest Start Dates 

 
Because only three systems analysts are available for the InterTrust project, it appears 
that the project violates the resource constraints.  One solution to this problem is to 
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purchase more resources. However, it may be possible to delay activities so that resource 
constraints are satisfied.  In fact, if a single activity is delayed less than its slack, the 
project as a whole will not be delayed.  Activities along the critical path cannot be 
delayed, but an activity with slack may be delayed without affecting the total project 
length.   
 
For InterTrust, activity D has eight units of slack and it may be rescheduled to begin after 
16, 17, or even 20, weeks without delaying the project.  If activity D begins after week 
16, only 3 systems analysts are needed (see Figure 6). 
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Figure 6: Number of Systems Analysts Needed if Activity D is Delayed by Six Weeks 

 
With this small project, we could find a schedule by hand which satisfied the resource 
constraints.  Scheduling activities so that resource utilization remains as low as possible 
is often called ‘smoothing’ the project.  With larger projects and multiple resources, 
computer-based optimization tools are needed to find a smoothed schedule. 
 

4.  ‘Crashing’ a Project to Shorten Duration 
 
For many projects there is a trade-off between project cost and project duration.  When a 
project lags behind its schedule, extra people may be assigned to the job to speed it up.  
Even for an on-time project there may be opportunities to ‘crash’ the project by hiring 
personnel or purchasing additional equipment.  A manager must asses the costs and 
benefits of speeding up the project. 
 
Recall that InterTrust is spending $3,000 per week until its new information system is on-
line.  Suppose that there is an opportunity to hire extra programmers to work on activities 
B, C, D, and/or G.  The available programmers have specialized skills and abilities; one 
programmer may be assigned to each task, and relevant data are listed in Table 2.  Here 
we assume that hiring an extra programmer is an all-or-nothing decision, e.g., if we want 
to shorten the duration of activity B we must pay $2,000 for a programmer who reduces 
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the expected activity time by 3 weeks.  In other situations it may be possible to purchase 
crashing help ‘by the week.’  To find this variable cost, we would interpolate: the weekly 
cost of crashing activity B would be $2,000/3 weeks = $667/week.  But, again, we now 
assume that the labor costs shown in Table 2 are indivisible. 
 
On first glance, all four programmers would seem to be a good deal.  Every week 
eliminated from the duration of the project will save $3,000, each programmer costs less 
than $3,000, and each will cut at least a week off an activity’s duration. 
 
 

 Cost of Time Estimates (weeks) 
Activity  Extra Programmer 

($‘000s) 
Normal Extra 

Programmer 
B 2 4 1 
C 2.5 4 1 
D 2 2 1 
G 1 6 1 

 
Table 2: Data for Crashing the InterTrust Project 

 
However, because of the dependence between activities, the benefits of the extra 
programmers may be limited.  Typically, activities on the critical path should be crashed 
since these activities determine the duration of the project.  But eventually, these paths 
are no longer critical.  We are faced with the question: which programmers, if any, 
should be hired? 
 
One method for evaluating opportunities to ‘crash’ a project is described by these steps: 
 

A Method for Crashing a Project 
 
Step 1: Assess the cost-effectiveness of crashing activities on the critical paths (it may be 

necessary to crash more than one activity to have an effect).  If no set of crashes 
leads to a net gain, stop; 

Step 2: Implement the most cost-effective crash until it is no longer cost effective or the 
paths involved are no longer critical; 

Step 3: A crash in step (2) may create new critical paths.  Revise the network and identify 
the new critical paths.  Return to step (1).  

 
As an example, consider the InterTrust project and the data in Table 2: 
 
Step 1: Activities B and C are on the critical path for InterTrust.  However, if either is 

shortened by two weeks then paths ‘A-E-F-H-END’ and ‘A-E-G-H-END’ 
become critical.  Therefore, we save at most 2 weeks by adding a programmer to 
either B or C, and the additional programmer for B costs less than the additional 
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programmer for C.  Therefore, crashing activity B is the most cost-effective plan, 
saving $6,000 while spending $2,000. 

Step 2: Crash activity B by reducing its duration from four weeks to one.  Note that 
crashing B from four weeks to two would have had the same effect, but we did 
not have that option at a lower cost. 

Step 3: With activity B crashed, we have the new network shown in Figure 7.  There are 
two new critical paths. 

Step 1: Activity G is the only activity on a critical path available for crashing.  However, 
crashing activity G will not decrease the duration of the project since path ‘A-E-
F-H-END’ would remain critical and the project duration would not dip below 20 
weeks.  Therefore, we are done. 
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Figure 7: InterTrust with Activity 'B' Crashed by Three Weeks 

 
Note that an extra programmer for activity G seemed like a bargain: 5 weeks saved for 
only $1,000.  However, hiring this programmer would not have shortened the duration of 
the project.1 
 
In general, crashing a single activity will not shorten the project unless that activity is on 
a unique critical path.  If there are multiple critical paths, activities on all of them must be 
crashed to shorten the project duration. 
 

                                                           
1 It is possible that an extra programmer for activity G would have liberated other programmers, who 
would then have been shifted to activities on other critical paths.  You see how complicated this can get! 
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5. Random Activity Times 
 
In the previous section, dependence between events limited the benefits of extra 
resources.  This dependence also exacerbates the effect of randomness, so that variations 
in project times tend to increase the length of the total project.  For InterTrust, we have 
assumed that activity durations are known in advance.  In practice these durations will be 
means, medians, or some other estimate, and the true activity times will vary around 
these estimates.  
 
What is the effect of this variation?  We have calculated that the original (non-crashed) 
InterTrust project will take 22 weeks with no variation in activity times.  But if activity 
times vary, we can expect the project to take longer than 22 weeks even if the expected 
values of individual activities are equal to the numbers listed in Table 1.  In fact, for any 
project subject to randomness,  
 
Expected project duration   

>  Project duration calculated from expected durations of individual activities 
 
An example should make this clearer.  Suppose that the duration of activity E in the 
InterTrust project were uncertain, and the project manager estimated that there was a 
50% chance the task would take 2 weeks and a 50% chance it would take ten weeks.  
Note that the expected duration is still six weeks, as listed in Table 1.  Is the expected 
total project duration still 22 weeks? 
 
If activity E lasts two weeks, the project remains 22 weeks long because a reduction in 
the duration of a non-critical path does not affect the duration of the project (see Figure 
3).  If activity E lasts ten weeks, then the path ‘A-E-F-H-END’ becomes critical, and the 
project duration is 24 weeks.  The expected duration of the project is now (1/2)(22) + 
(1/2)(24) = 23 weeks.  The expected duration has risen by one week, even though the 
expected durations of each individual activity remained the same. 

When multiple activities are subject to randomness then it is very difficult to calculate the 
expected duration of the project as a whole.  Mathematical approximations or Monte 
Carlo simulation may be used to find project durations, costs, and resource utilization.2  
However, the underlying insight is similar to the insights from The Goal and from 
queueing theory.3,4  Deterministic calculations tell only part of the story; statistical 
fluctuations (what we have called variability) and dependent events conspire to lengthen 
the duration of the projects. 

                                                           
2 A ‘Monte Carlo simulation’ is designed to reproduce the behavior of a system that is subject to 
randomness.  One input to the simulation is a sequence of random variables, and the simulation’s response 
to this random input imitates the response of the real system. 
3 E. M. Goldratt and J. Cox, The Goal: A Process of Ongoing Improvement, North River Press Publishing 
Corporation; 2nd Revision edition (May 1992). 
4 Queueing theory, also known as waiting line theory, helps us to make capacity decisions when demand 
and process variability cause congestion. 


