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1. Introduction 

In 1991, packaged-goods behemoth Procter & Gamble (P&G) initiated a “value pricing” scheme 

for sales to retailers. Value pricing was P&G’s label for everyday low pricing (EDLP), a pricing 

strategy under which retailers are charged a consistent price rather than a high baseline price 

punctuated by sporadic, deep discounts. P&G had many reasons for converting to EDLP. Its 

sales force had grown to rely on discounting to drive sales and the use of deep discounts had 

spiraled out of control, cutting into earnings (Saporito, 1994). The discounts then created demand 

shocks, as both retailers and customers loaded up on products whenever the price dropped. This 

exacerbated the so-called bullwhip effect, as demand variability was amplified up the supply 

chain, reducing the utilization of distribution resources and factories and increasing costs (Lee, 

Padmanabhan, and Whang, 1997). 

Despite the costs of its traditional discounting strategy, the move to value pricing was 

risky for P&G.  How would retailers, consumers, and competing manufacturers respond to 

P&G’s EDLP program? For example, would competitors deepen their own discounts to pull 

market share away from P&G?  Or would they also move to a low, consistent price? To 
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accurately predict competitors’ behavior, P&G would have to consider each competitor’s beliefs 

about P&G itself. For example, it was possible that Unilever, a competing manufacturer, might 

increase its discounting if it believed that P&G was not fully committed to EDLP but otherwise 

might itself adopt EDLP.  Therefore, P&G’s decision on whether and how to adopt EDLP 

depended on the responses of its competitors, which, in turn, depended upon their beliefs about 

what P&G was going to do. 

P&G’s actions depended on Uniliver’s, which depended on P&G’s—a chicken-and-egg 

problem that can make your head spin. There is, however, an approach to problems like this that 

can cut through the complexity and help managers make better pricing decisions. That approach, 

game theory, was first developed as a distinct body of knowledge by mathematicians and 

economists in the 1940s and ’50s (see the pioneering work by von Neumann and Morgenstern, 

1944, and Nash, 1950). Since then, it has been applied to a variety of fields, including computer 

science, political science, biology, operations management, and marketing science. 

In this chapter, we first introduce the basic concepts of game theory by using simple 

pricing examples. We then link those examples with both the research literature and industry 

practice, including examples of how game theory has been used to understand P&G’s value 

pricing initiative and the competitive response. In Section 2 we define the basic elements of a 

game and describe the fundamental assumptions that underlie game theory.  In the remaining 

sections we examine models that provide insight into how games work (e.g., understanding 

various types of equlibria) as well as how competition affects pricing.  The models may be 

categorized according to two attributes: the timing of actions and the number of periods (Table 

1).  In many of the models, competitors make simultaneous pricing decisions, so that neither 
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player has more information about its competitor’s actions than the other.  In other games with 

sequential timing, one competitor sets its price first.  Some games have a single period (we 

define a ‘period’ as a time unit in which each player takes a single action), while other games 

will have multiple time periods, and actions taken in one period may affect actions and rewards 

in later periods.  Along the way, we will make a few side trips: a brief look at behavioral game 

theory in Section 3.2 and some thoughts on implications for the practice of pricing in Section 4. 
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One Sections 2.1-2.4, 2.6 Section 2.5 

Multiple Sections 3.1 – 3.4 Sections 3.5-3.6 

 

Table 1: Game types in this chapter 

This chapter does not contain a rigorous description of the mathematics behind game 

theory, nor does it cover all important areas of the field.  For example, we will not discuss 

cooperative game theory, in which participants form coalitions to explicitly coordinate their 

prices (in many countries, such coalitions would be illegal).  We will, however, say a bit more 

about cooperative games at the end of Section 2.6. 

For a more complete and rigorous treatments of game theory, we recommend Fudenberg 

and Tirole (1991), Myerson (1991), and Gibbons (1992). For more examples of how 

practitioners can make use of game theory for many decisions in addition to pricing, we 

recommend Dixit and Nalebuff (1991).  Moorthy (1985) focuses on marketing applications such 
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as market-entry decisions and advertising programs, as well as pricing. Cachon and Netessine 

(2006) discuss applications of game theory to supply chain management. Nisan et. al. (2007) 

describe computational approaches to game theory for applications such as information security, 

distributed computation, prediction markets, communications networks, peer-to-peer systems, 

and the flow of information through social networks.  The popular press and trade journals also 

report on how game theory can influence corporate strategy.  For example Rappeport (2008) 

describes how game theory has been applied at Microsoft, Chevron, and other firms.  Finally, 

information intermediaries such as Yahoo and Google employ research groups that develop 

game theory models to understand how consumers and firms use the web, and to develop new 

business models for the internet (see labs.yahoo.com/ and research.google.com/). 

2. Introduction to Game Theory: Single-Period Pricing Games 

A game is defined by three elements: players, strategies that may be used by each player, and 

payoffs.   

A game consists of players (participants in the game), strategies (plans by each player that 

describe what action will be taken in any situation), and payoffs (rewards for each player for all 

combinations of strategies).   

In the value-pricing example above, the players might be P&G and Unilever, their strategies are 

the prices they set over time under certain conditions, and the payoffs are the profits they make 

under various combinations of pricing schemes.  Given that each player has chosen a strategy, 

the collection of players’ strategies is called a strategy profile.  If we know the strategy profile, 

then we know how every player will act for any situation in the game. 
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When describing a game, it is also important to specify the information that is available 

to each player. For example, we will sometimes consider situations in which each player must 

decide upon a strategy to use without knowing the strategy chosen by the other player. At other 

times, we will let one player observe the other player’s choice before making a decision.  

When analyzing a game, there are two basic steps. The first is to make clear the 

implications of the rules—to fully understand the relationships between the strategies and the 

payoffs. Once we understand how the game works, the second step is to determine which 

strategy each player will play under various circumstances. This analysis may begin with a 

description of each player’s optimal strategy given any strategy profile for the other players. The 

analysis usually ends with a description of equilibrium strategies - a strategy profile that the 

players may settle into and will not want to change. One fascinating aspect of game theory is that 

these equilibrium strategies can often be quite different from the best overall strategy that might 

be achieved if the players were part of a single firm that coordinated their actions. We will see 

that competition often can make both players worse off.  

A typical assumption in game theory, and an assumption we hold in much of this chapter, 

is that all players know the identities, available strategies, and payoffs of all other players, as in a 

game of tic-tac-toe.  When no player has private information about the game that is unavailable 

to the other players, and when all players know that the information is available to all players, we 

say that the facts of the game are common knowledge (see Aumann, 1976, and Milgrom, 1981, 

for more formal descriptions of the common knowledge assumption).  In some instances, 

however, a player may have private information.  For example, one firm may have more accurate 

information than its competitor about how its own customers respond to price changes by the 
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competitor.  Such games of incomplete information are sometimes called Bayesian games, for 

uncertainty and probability are important elements of the game, and Bayes’ rule is used to update 

the players’ beliefs as the game is played.  See Gibbons (1992) and Harsanyi (1967) for more 

background on Bayesian games. 

We also assume that the players are rational, i.e., that firms make pricing decisions to 

maximize their profits.  Finally, we assume that each player knows that the other players are 

rational.  Therefore, each player can put itself in its competitors’ shoes and anticipate its 

competitors’ choices.  Pushing further, each player knows that its competitors are anticipating its 

own choices, and making choices accordingly.  In general, we assume that the players have an 

infinite hierarchy of beliefs about strategies in the game. This assumption is vital for 

understanding why competitors may achieve the Nash equilibrium described in the next Section.  

The assumption also highlights a key insight that can be developed by studying game theory – 

the importance of anticipating your competitors’ actions.   

2.1 A First Example: Pricing the UltraPhone and the Prisoner’s Dilemma 

Consider two players, firms A and B, that have simultaneously developed virtually identical 

versions of what we will call the UltraPhone, a hand-held device that includes technology for 

cheap, efficient 3-dimensional video-conferencing. Both firms will release their UltraPhones at 

the same time and, therefore, each has to set a price for the phone without knowing the price set 

by its competitor. For the purposes of this example, we assume both firms will charge either a 

High price or a Low price for all units (see Table 2).  Therefore, the firms’ possible actions are to 

price ‘High’ or ‘Low,’ and each firm’s strategy is a plan to charge one of these two prices. 
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Price Unit contribution 

margin at that price 

Number in 

segment 

High $800 2,000,000 

Low $300 2,000,000 

Table 2: Prices, margins, and segments for the UltraPhone 

To complete the description of the game, we describe the payoffs under each strategy 

profile.  At the High price, the firms’ unit contribution margin is $800/phone; at the Low price, 

the firms’ unit contribution margin is $300/phone. There are two segments of customers for the 

UltraPhone, and the maximum price each segment is willing to pay is very different.  The two 

million people in the “High” segment are all willing to pay the High price (but would, of course, 

prefer the Low price), while the two million people in the “Low” segment are only willing to pay 

the Low price.  We also assume that if both firms charge the same price, then sales are split 

equally between the two firms. And we assume both firms can always manufacture a sufficient 

number of phones to satisfy any number of customers. Note that in this example, there is no 

reliable way to discriminate between segments; if the phone is offered for the Low price by 

either firm, then both the two million Low customers and the two million High customers will 

buy it for that Low price.  

Given the information in Table 1, both firms ask, “What should we charge for our 

phone?” Before looking at the competitive analysis, consider what the firms should do if they 

coordinate—e.g., if they were not competitors but instead were divisions of one firm that is a 

monopoly producer of this product. The total contribution margin given the High price is 2 

million*$800 = $1.6 billion. The margin given the Low price is (2 million + 2 million)*$300 = 
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$1.2 billion. Therefore, the optimal solution for a monopoly is to set prices to exclusively target 

the high-end market. 

  B Chooses… 
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Table 3: The UltraPhone game. Entries in each cell are payoffs to A (lower number in each 

cell) and to B (upper number in each cell) in $100 millions. 

Now we turn to the competitive analysis—the game. The two competing firms, A and B, 

face the situation shown in Table 3, which represents a normal form of a game. The rows 

correspond to the two different strategies available to firm A: price High or Low. The columns 

correspond to the same strategies for B. The entries in the tables show the payoffs, the total 

contribution margins for firm A (the lower number in each cell of the table) and firm B (the 

upper number in each cell) in units of $100 million. If both price High (the upper left cell), then 

they split the $1.6 billion equally between them. If both price Low (bottom right cell), then they 

split the $1.2 billion. For the cell in the upper right, A prices High but B prices Low, so that B 

captures all of the demand at the Low price and gains $1.2 billion. The lower left cell shows the 

reverse. 
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Given this payoff structure, what should the firms do? First, consider firm A’s decision, 

given each strategy chosen by B. If B chooses High (the first column), then it is better for A to 

choose Low.  Therefore, we say that Low is player A’s best response to B choosing High. 

A player’s best response is the strategy, or set of strategies, that maximizes the player’s payoff, 

given the strategies of the other players. 

If B chooses Low (the second column), then firm A’s best response is to choose Low as well. 

The fact that it is best for A to price Low, no matter what B does, makes pricing Low a particular 

type of strategy, a dominant one. 

A strategy is a dominant strategy for a firm if it is optimal, no matter what strategy is used by 

the other players. 

Likewise, dominated strategies are never optimal, no matter what the competitors do. 

Pricing Low is also a dominant strategy for B: no matter what A chooses, Low is better.  

In fact, the strategy profile [A Low, B Low] is the unique Nash Equilibrium of this game; if both 

firms choose Low, then neither has a reason to unilaterally change its mind. 

The firms are in a Nash Equilibrium if the strategy of each firm is the best response to the 

strategies of the other firms.  Equivalently, in a Nash equilibrium, none of the firms have any 

incentive to unilaterally deviate from its strategy.  

This is the only equilibrium in the game. For example, if A chooses High and B chooses Low, 

then A would have wished it had chosen Low and earned $600 million rather than $0. Note that 
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for the Nash equilibrium of this game, both firms choose their dominant strategies, but that is not 

always the case (see, for example, the Nash equilibria in the Game of Chicken, Section 2.3). 

Because we assume that both firms are rational and fully anticipate the logic used by the 

other player (the infinite belief hierarchy), we predict that both will charge Low, each will earn 

$600 million, and the total industry contribution margin will be $1.2 billion. This margin is less 

than the optimal result of $1.6 billion. This is a well-known result: under competition, both 

prices and industry profits decline. We will see in Section 3.1, however, that it may be possible 

to achieve higher profits when the game is played repeatedly.  

This particular game is an illustration of a Prisoner’s Dilemma. In the classic example of 

the Prisoner’s Dilemma, two criminal suspects are apprehended and held in separate rooms. If 

neither confesses to a serious crime, then both are jailed for a short time (say, one year) under 

relatively minor charges. If both confess, they both receive a lengthy sentence (five years). But if 

one confesses and the other doesn’t, then the snitch is freed and the silent prisoner is given a long 

prison term (10 years). The equilibrium in the Prisoner’s Dilemma is for both prisoners to 

confess, and the resulting five-year term is substantially worse than the cooperative equilibrium 

they would have achieved if they had both remained silent. In the UltraPhone example, the Low-

Low strategy is equivalent to mutual confession. 

The strategy profile [A Low, B Low] is a Nash equilibrium in pure strategies. It is a pure 

strategy equilibrium because each player chooses a single price. The players might also consider 

a mixed strategy, in which each player chooses a probability distribution over a set of pure 

strategies (see Dixit and Skeath, 1999, chapter 5, for an accessible and thorough discussion of 

mixed strategies).   The equilibrium concept is named after John Nash, a mathematician who 
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showed that if each player has a finite number of pure strategies, then there must always exist at 

least one mixed strategy or pure strategy equilibrium (Nash, 1950). In certain games, however, 

there may not exist a pure strategy equilibrium and as we will see in Section 2.4, it is also 

possible to have multiple pure-strategy equilibria. 

2.2 Bertrand and Cournot Competition 

The UltraPhone game is similar to a Bertrand competition, in which two firms produce identical 

products and compete only on price, with no product differentiation. It can be shown that if 

demand is a continuous linear function of price and if both firms have the same constant 

marginal cost, then the only Nash equilibrium is for both firms to set a price equal to their 

marginal cost. As in the example above, competition drives price down, and in a Bertrand 

competition, prices are driven down to their lowest limit. 

Both the UltraPhone example and the Bertrand model assume that it is always possible 

for the firms to produce a sufficient quantity to supply the market, no matter what price is 

charged. Therefore, the Bertrand model does not fit industries with capacity constraints that are 

expensive to adjust. An alternative model is Cournot competition, in which the firms’ strategies 

are quantities rather than prices. The higher the quantities the firms choose, the lower the price. 

Under a Cournot competition between two firms, the resulting Nash equilibrium price is higher 

than the marginal cost (the Bertrand solution) but lower than the monopoly price. As the number 

of firms competing in the market increases, however, the Cournot equilibrium price falls. In the 

theoretical limit (an infinite number of competitors), the price drops down to the marginal cost.  

See Weber [this volume] for additional discussion of Bertrand and Cournot competition. 



12 

 

Besides the assumption that there are no capacity constraints, another important 

assumption of Bertrand competition is that the products are identical, so that the firm offering the 

lowest price attracts all demand. We will relax this assumption in the next section. 

2.3 Continuous Prices, Product Differentiation, and Best Response Functions 

In Section 2.1 we restricted our competitors to two choices: High and Low prices.  In practice, 

firms may choose from a variety of prices, so now assume that each firm chooses a price over a 

continuous range.  Let firm i's price be pi (i=A or B).  In this game, a player’s strategy is the 

choice of a price, and we now must define the payoffs, given the strategies.  First we describe 

how each competitor’s price affects demand for the product.  In the last section, all customers 

chose the lowest price.  Here we assume that the products are differentiated, so that some 

customers receive different utilities from the products and are therefore loyal; they will purchase 

from firm A or B, even if the other firm offers a lower price.  Specifically, let ݀݅ሺ݆݌,݅݌) be the 

demand for product i, given that the competitors charge pi and pj.  We define the linear demand 

function, 

݀݅ሺ݆݌,݅݌ሻൌܽെܾ݅݌൅݆ܿ݌. 

If c > 0, we say that the products are substitutes: a lower price charged by firm A leads to more 

demand for A’s product and less demand for B’s (although if ݌B ൏ ݌A, B does not steal all the 

demand, as in Section 2.1).  If c < 0, then the products are complements: a lower price charged 

by A raises demand for both products.  In the UltraPhone example, the products are substitutes; 

product A and a specialized accessory (e.g., a docking station) would be complements.  If c=0 
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then the two products are independent, there is no interaction between the firms, and both firms 

choose their optimal monopoly price. 

 

Figure 1: Best response functions in the UltraPhone pricing game  

with product differentiation 

Now let m be the constant marginal cost to produce either product.  Firm i's margin is 

therefore ሺ݅݌െmሻ݀݅ሺ݆݌,݅݌ሻ.  This function is concave with respect to pi, and therefore the optimal 

price for firm i given that firm j charges pj can be found by taking the derivative of the function 

with respect to pi, setting that first derivative equal to 0, and solving algebraically for pi.  Let 

௜݌
 ,௝ሻ be the resulting optimal price, and we find݌ሺכ

௜݌ 
௝൯݌൫כ ൌ

ଵ

ଶ௕
൫ܽ ൅ ܾ݉ ൅  ௝൯. (1)݌ܿ

This optimal price is a function of the competitor’s price, and therefore we call ݌௜
 ௝ሻ the best݌ሺכ

response function of i to j; this is the continuous equivalent of the best response defined in 
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Section 2.1.  Figure 1 shows the two best response functions on the same graph, for a given set of 

parameters a=3000, b=4, c=2¸and m=$200/unit.  For example, if Firm B sets a price of $300, 

Firm A’s best response is a price of $550.   From the function, we see that if the products are 

substitutes and c > 0 (as in this case), the best response of one firm rises with the price of the 

other firm.  If the products are complements, the lines would slope downward, so that if one firm 

raises its prices then the best response of the competitor is to lower its price. 

The plot also shows that if Firm A chooses a price of $633, then Firm B’s best response 

is also $633.  Likewise, if Firm B chooses $633, then so does Firm A. Therefore, neither firm has 

any reason to deviate from choosing $633, and [$633, $633] is the unique Nash equilibrium.  In 

general, the equilibrium prices satisfy equation (1) when i is Firm A as well as when i  is Firm B.  

By solving these two equations we find, 

௜݌
כ ൌ ௝݌ 

כ ൌ
ܽ ൅ ܾ݉
2ܾ െ ܿ

. 

Note that as c rises, and the products move from being complements to substitutes, the 

equilibrium price declines. 

In this example, the firms are identical and therefore the equilibrium is symmetric (both 

choose the same price).  With non-identical firms (e.g., if they have different parameter values in 

the demand function and/or different marginal costs), then there can be a unique equilibrium in 

which the firms choose different prices (Singh and Vives, 1984).  We will discuss additional 

extensions of this model, including the role of reference prices, in Section 3.3. 
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2.4 Multiple Equilibria and a Game of Chicken 

Now return to the UltraPhone pricing game with two price points, as in Section 2.1, although we 

also incorporate product differentiation, as in Section 2.3.  Assume that 40 percent of the High-

segment customers are loyal to firm A and will choose A’s product even if A chooses a High 

price while B chooses a Low price. Likewise, 40 percent of the High-segment customers are 

loyal to firm B. The payoffs from this new game are shown in Table 4. If both firms price High 

or both price Low, then the payoffs do not change. If A prices High and B prices Low (the upper 

right cell), then A’s margin is 40%*(2 million)*$800 = $640 million while B’s margin is 

(60%*(2 million) + 2 million)*$300 = $960 million. The lower left cell shows the reverse. 

  B Chooses… 

 
 High Low 

A
 C

ho
os

es
...

 

High 
8
       

8
 

6.4
       

9.6

Low 
9.6

       
6.4

6
       

6
 

 

Table 4: Payoffs for the UltraPhone game with loyal customers, in $100 millions 

The presence of loyal customers significantly changes the behavior of the players. If B 

chooses High, then A’s best response is to choose Low, while if B chooses Low, A’s best 

response is to choose High.  In this game, neither firm has a dominant strategy, and [A Low, B 

Low] is no longer an equilibrium; if the firms find themselves in that cell, both firms would have 
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an incentive to move to High. But [A High, B High] is not an equilibrium either; both would then 

want to move to Low. 

In fact, this game has two pure strategy Nash equilibria: [A High, B Low] and [A Low, B 

High]. Given either combination, neither firm has any incentive to unilaterally move to another 

strategy. Each of these two equilibria represents a split in the market between one firm that 

focuses on its own High-end loyal customers and the other that captures everyone else. 

This example is analogous to a game of “chicken” between two automobile drivers. They 

race towards one another and if neither swerves, they crash, producing the worst outcome—in 

our case [A Low, B Low]. If both swerve, the payoff is, obviously, higher. If one swerves and 

the other doesn’t, the one who did not swerve receives the highest award, while the one who 

“chickened out” has a payoff that is lower than if they had both swerved but higher than if the 

driver had crashed. As in Table 4, there are two pure strategy equilibria in the game of chicken, 

each with one driver swerving and the other driving straight. 1 

The existence of multiple equilibria poses a challenge for both theorists and practitioners 

who use game theory. Given the many possible equilibria, will players actually choose one?  If 

so, which one?  Behavioral explanations have been proposed to answer this question – see 

Section 3.2.  In addition, game theorists have invented variations of the Nash equilibrium to 

address these questions.  These variations are called refinements, and they lay out criteria that 

exclude certain types of strategies and equilibria.  Many of these innovations depend upon the 

theory of dynamic games, in which the game is played in multiple stages over time (see Section 

                                                 
1 There is also a mixed-strategy equilibrium for the game in Table 4.  If each player randomly selects a High price 
with probability 0.2 and a Low price with probability 0.8, then neither player has any incentive to choose a different 
strategy. 
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3). The subgame perfect equilibrium described in the next section is one such refinement.  

Another is the trembling-hand perfect equilibrium in which players are assumed to make small 

mistakes (or “trembles”) and all players take these mistakes into account when choosing 

strategies (Selten, 1975; Fudenberg and Tirole, 1991, Section 8.4).  For descriptions of additional 

refinements, see Govindan and Wilson (2005).  

2.5 Sequential Action and a Stackelberg Game 

In the previous Section, we assumed that both firms set prices simultaneously without knowledge 

of the other’s decision. We saw how this game has two equilibria and that it is difficult to predict 

which one will be played.  In this Section we will see how this problem is resolved if one player 

moves first and chooses its preferred equilibrium; in the game of chicken, imagine that one 

driver rips out her steering wheel and throws it out her window, while the other driver watches. 

For the UltraPhone competition, assume that firm A has a slight lead in its product 

development process and will release the product and announce its price first. The release and 

price announcement dates are set in stone—e.g., firm A has committed to announcing its price 

and sending its products to retailers on the first Monday of the next month, while firm B will 

announce its price and send its products to retailers a week later. It is important to note that these 

are the actual pricing dates. Either firm may publicize potential prices before those dates, but 

retailers will only accept the prices given by firm A on the first Monday and firm B on the 

second Monday. Also, assume that the one-week “lag” does not significantly affect the sales 

assumptions introduced in Sections 2.1 and 2.4. 

This sequential game has a special name, 
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In a Stackelberg Game, one player (the leader) moves first, while the other player (the follower) 

moves second after observing the action of the leader. 

The left side of Figure 2 shows the extensive-form representation of the game, with A’s choice 

as the first split at the top of the diagram and B’s choice at the bottom. 

Figure 2: Analysis of the UltraPhone game with loyal customers and A as a first mover 

One can identify an equilibrium in a Stackelberg Game (a Stackelberg equilibrium) by 

backwards induction - work up from the bottom of the diagram. First, we see what firm B would 

choose, given either action by firm A. As the second tree in Figure 2 shows, B would choose 

Low if A chooses High and would choose High if A chooses Low. Given the payoffs from these 

choices, it is optimal for A to choose low, and the Stackelberg equilibrium is [A Low, B High], 

with the highest payoff—$960 million—going to firm A. By moving first, firm A has guided the 

game towards its preferred equilibrium. 

It is important to note, however, that [A High, B Low] is still a Nash equilibrium for the 

full game. Suppose that firm B states before the crucial month arrives that no matter what firm A 

decides, it will choose to price Low (again, this does not mean that firm B actually sets the price 
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to Low before the second Monday of the month, just that it claims it will). If firm A believes this 

threat, then it will choose High in order to avoid the worst-case [A Low, B Low] outcome.  

Therefore, another equilibrium may be [A High, B Low], as in the simultaneous game of Section 

2.4. 

But can firm A believe B’s threat?  Is the threat credible?  Remember that A moves first 

and that B observes what A has done. Once A has chosen Low, it is not optimal for B to choose 

Low as well; it would be better for B to abandon its threat and choose High. We say that B’s 

choices (the second level in Figure 1) are subgames of the full game. When defining an 

equilibrium strategy, it seems natural to require that the strategies each player chooses also lead 

to an equilibrium in each subgame.  

In a subgame perfect equilibrium, the strategies chosen for each subgame is a Nash 

equilibrium of that subgame. 

In this case, B’s strategy “price Low no matter what A does” does not seem to be part of a 

reasonable equilibrium because B will not price Low if A prices Low first; An equilibrium that 

includes B Low after A Low is not Nash. Therefore, we say that [A Low, B High] is a subgame 

perfect equilibrium but that [A High, B Low] is not. 

2.6 An Airline Revenue Management Game 

In the UltraPhone game, the two firms set prices, and we assume the firms can easily adjust 

production quantities to accommodate demand. The dynamics of airline pricing often are quite 

different. The capacity of seats on each flight is fixed over the short term, and prices for various 

types of tickets are set in advance. As the departure of a flight approaches, the number of seats 
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available at each price is adjusted over time. This dynamic adjustment of seat inventory is 

sometimes called revenue management; see Talluri [this volume] for additional information of 

the fundamentals of revenue management as well as Barnes [this volume], Kimes et al. [this 

volume], and Lieberman [this volume] for descriptions of applications.  

Here, we will describe a game in which two airlines simultaneously practice revenue 

management. As was true for the initial UltraPhone example, the game will be a simplified 

version of reality.  For example, we will assume that the single flight operated by each airline has 

only one seat left for sale.  As we will discuss below, however, the insights generated by the 

model hold for realistic scenarios. 

Suppose two airlines, X and Y, offer direct flights between the same origin and 

destination, with departures and arrivals at similar times.  We assume that each flight has just one 

seat available. Both airlines sell two types of tickets: a low-fare ticket with an advance-purchase 

requirement for $200 and a high-fare ticket for $500 that can be purchased at any time. A ticket 

purchased at either fare is for the same physical product: a coach-class seat on one flight leg. The 

advance-purchase restriction, however, segments the market and allows for price discrimination 

between customers with different valuations of purchase-time flexibility.  Given the advance-

purchase requirement, we assume that demand for low-fare tickets occurs before demand for 

high-fare tickets.  Customers who prefer a low fare and are willing to accept the purchase 

restrictions will be called “low-fare customers.” Customers who prefer to purchase later, at the 

higher price, are called “high-fare customers.” 

Assume marginal costs are negligible, so that the airlines seek to maximize expected 

revenue. To increase revenue, both airlines may establish a booking limit for low-fare tickets: a 
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restriction on the number of low-fare tickets that may be sold. (In our case, the booking limit is 

either 0 or 1.) Once this booking limit is reached by ticket sales, the low fare is closed and only 

high-fare sales are allowed. If a customer is denied a ticket by one airline, we assume that 

customer will attempt to purchase a ticket from the other airline (we call these “overflow 

passengers”). Therefore, both airlines are faced with a random initial demand as well as demand 

from customers who are denied tickets by the other airline. Passengers denied a reservation by 

both airlines are lost.  We assume that for each airline, there is a 100 percent chance that a low-

fare customer will attempt to purchase a ticket followed by a 50 percent chance that a high-fare 

customer will attempt to purchase a ticket. This information is summarized in Table 5. 

  Demand 

Fare Class Ticket Price Airline X Airline Y 

Low $200 1 (guaranteed) 1 (guaranteed) 

High $500 
Prob{0}=0.5 

Prob{1}=0.5 

Prob{0}=0.5 

Prob{1}=0.5 

Table 5: Customer segments for the revenue management game 

The following is the order of events in the game: 

1. Airlines establish booking limits. Each airline chooses to either close the low-fare class 

(“Close”) and not sell a low-fare ticket, or keep it open (“Open”). In this revenue management 

game, the decision whether to Close or remain Open is the airline’s strategy. 

2. A low-fare passenger arrives at each airline and is accommodated (and $200 collected) if 

the low-fare class is Open. 
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3. Each airline either receives a high-fare passenger or does not see any more demand, where 

each outcome has probability 0.5. If a passenger arrives, and if the low-fare class has been 

closed, the passenger is accommodated (and $500 collected). 

4. A high-fare passenger who is not accommodated on the first-choice airline spills to the 

alternate airline and is accommodated there if the alternate airline has closed its seat from a 

low-fare customer and has not sold a seat to its own high-fare customer. 

 

  Y Chooses… 

  
Open Close 

X
 C

ho
os

es
...

 Open 

200
       

200
 

200
       

375
 

Close 

375
       

200
 

250
       

250
 

 

Table 6: Expected payoffs for the airline revenue management game.  

Entries in each cell are payoffs to X, Y. 

Table 6 shows the payoffs for each combination of strategies. If both airlines choose to 

keep the low-fare class Open, both book customers for $200. If both choose to Close, each has a 

50 percent chance to book a high fare, so that each has an expected value of (0.5)*$500 = $250. 

In the upper right cell, if X chooses to Open and Y chooses to Close, then X books a low-fare 

customer for $200 while Y has a chance to book a high-fare customer. That high-fare customer 

may either be a customer who originally desired a flight on Y (who arrives with probability 0.5) 
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or a spillover from X (who also arrives, independently, with probability 0.5). Therefore, Y’s 

expected revenue is [1- (0.5)(0.5)]*$500 = $375. The lower left cell shows the reverse situation. 

By examining Table 6, we see that the only Nash equilibrium is [X Close, Y Close]. If 

one airline chooses to Close, then the airline that chooses Open foregoes the opportunity to book 

a high-fare customer. 

Note that this game is not precisely the same as the UltraPhone game/Prisoner’s Dilemma 

discussed in Section 2.1; the airlines could have done even worse with [X Open, Y Open]. The 

competitive equilibrium, however, is inferior in terms of aggregate revenue to the cooperative 

solution, just as it is in the Prisoner’s Dilemma. In Table 6, the highest total revenue across both 

airlines—$575—is obtained with strategies [X Open, Y Close] or [X Close, Y Open]. The Nash 

equilibrium has an expected total revenue of $500. 

There is another interesting comparison to make with the UltraPhone game. In that game, 

competition drove prices down. In this game, competition leads the airlines from an optimal 

coordinated solution [X Open, Y Close] or [X Close, Y Open] to the Nash equilibrium [X Close, 

Y Close]. Therefore, under the coordinated solution, one low-fare ticket is sold and one high-fare 

ticket may be sold. Under the Nash equilibrium, only high-fare tickets may be sold. Netessine 

and Shumsky (2005) analyze a similar game with two customer classes and any number of 

available seats, and they  confirm that this general insight continues to hold; under competition, 

more seats are reserved for high-fare customers, while the number of tickets sold (the load 

factor) declines, as compared to the monopoly solution. The use of seat inventory control by the 

airlines and the low-to-high pattern of customer valuations inverts the Bertrand and Cournot 
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results; competition in the revenue management game raises the average price paid for a ticket as 

compared to the average price charged by a monopolist.  

In practice, however, airlines may compete on multiple routes, offer more than two fare 

classes, and do not make a single revenue management decision simultaneously.  Jiang and Pang 

(2007) extend this model to airline competition over a network.  Dudey (1992) and Martinez-de-

Albeniz and Talluri (2010) analyze the dynamic revenue management problem, in which the 

airlines adjust booking limits dynamically over time.  d'Huart (2010) uses a computer simulation 

to compare monopoly and oligopoly airline revenue management behavior.  He simulates up to 4 

airlines with 3 competing flights offered by each airline and six fare classes on each flight.  The 

simulation also incorporates many of the forecasting and dynamic revenue management 

heuristics used by the airlines.  The results of the simulation correspond to our models’ 

predictions: fewer passengers are booked under competition, but with a higher average fare. 

Of course, the airlines may prefer to collaborate, agree to one of the monopoly solutions, 

and then split the larger pot so that both airlines would come out ahead of the Nash outcome.  In 

general, such collusion can increase overall profits, while reducing consumer surplus.  Such 

price-fixing is illegal in the United States, Canada, the European Union, and many other 

countries.  Occasionally airlines do attempt to collude and get caught, e.g., British Airways and 

Virgin Atlantic conspired to simultaneously raise their prices on competing routes by adding fuel 

surcharges to their tickets.  Virgin Atlantic reported on the plot to the U.S. Department of Justice, 

and British Airways paid a large fine (Associated Press, 2007). 

In the absence of such legal risks, a fundamental question is whether such collusion is 

stable when airlines do not have enforceable agreements to cooperate as well as explicit methods 
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for distributing the gains from cooperation.  As we have seen from the examples above, each 

player has an incentive to deviate from the monopoly solution to increase its own profits.  In 

Section 3 we will discuss how repeated play can produce outcomes other than the single-play 

Nash equilibrium describe above. 

In certain cases in the United States, airlines have received permission from the 

Department of Justice to coordinate pricing and split the profits.  Northwest and KLM have had 

such an agreement since 1993, while United, Lufthansa, Continental and Air Canada began 

coordinating pricing and revenue management on their transatlantic flights in 2009 

(BTNonline.com, 2008; DOT, 2009).  The ability of such joint ventures to sustain themselves 

depend upon whether each participant receives a net benefit from joining the coalition.  

Cooperative game theory focuses on how the value created by the coalition may be distributed 

among the participants, and how this distribution affects coalition stability.  Such joint ventures, 

however, are the exception rather than the rule in the airline business and elsewhere, and 

therefore we will continue to focus on non-cooperative game theory. 

3. Dynamic Pricing Games 

Pricing competition can be viewed from either a static or a dynamic perspective. Dynamic 

models incorporate the dimension of time and recognize that competitive decisions do not 

necessarily remain fixed.  Viewing competitive pricing strategies from a dynamic perspective 

can provide richer insights, and for some questions more accurate answers, than when using 

static models.  In this Section we will first explain how dynamic models differ from the models 

presented in the last Section.  We will then describe a variety of dynamic models, and we will 

see how the price equilibria predicted by the models can help firms to understand markets and set 
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prices.  Finally, and perhaps most significantly, we will show how pricing data collected from 

the field has been used to test the predictions made by game theory models.   

First, we make clear what we mean by a dynamic game: 

If a game is played exactly once, it is a single-period, or a one-shot, or a static game.  If a 

pricing game is played more than once, it is a dynamic or a multi-period game. 

 

In a dynamic game, decision variables in each period are sometimes called control variables.  

Therefore, a firm’s strategy is a set of values for the control variables. 

Dynamic competitive pricing situations can be analyzed in terms of either continuous or discrete 

time. Generally speaking, pricing data from the market is discrete in nature (e.g., weekly price 

changes at stores or the availability of weekly, store-level scanner data), and even continuous-

time models, which are an abstraction, are discretized for estimation of model parameters from 

market data. Typically, dynamic models are treated as multi-period games because critical 

variables—sales, market share, and so forth—are assumed to change over time based on the 

dynamics in the marketplace. Any dynamic model of pricing competition must consider the 

impact of competitors’ pricing strategies on the dynamic process governing changes in sales or 

market-share variables. 

In this section we will describe a variety of dynamic pricing policies for competing 

firms.  See Aviv and Vulcano [this volume] for more details on dynamic policies that do not take 

competitors’ strategies directly into account.  That chapter also describes models that examine, in 

more detail, the effects of strategic customers.  Other related chapters include Ramakrishnan 
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[this volume], Blattberg and Breisch [this volume], and Kaya and Ozer [this volume].  This last 

chapter is closely related to the material in Sections 2.5 and 3.5, for it also describes Stackelberg 

games, while examining specific contracts between wholesalers and retailers (e.g., buyback, 

revenue sharing, etc.), the effects of asymmetric forecast information, and the design of contracts 

to elicit accurate information from supply chain partners.  For additional discussion of issues 

related to behavioral game theory (discussed in Section 3.2, below), see Ozer and Zheng [this 

volume]. 

3.1 Effective Competitive Strategies in Repeated Games 

We have seen in Section 2.1 how a Prisoner’s Dilemma can emerge as the non-cooperative Nash 

equilibrium strategy in a static, one-period game. In the real world, however, rarely do we see 

one-period interactions. For example, firms rarely consider competition for one week and set 

prices simply for that week, keeping them at the same level during all weeks into the future. 

Firms have a continuous interaction with each other for many weeks in a row, and this 

continuous interaction gives rise to repeated games. 

A repeated game is a dynamic game in which past actions do not influence the payoffs or set of 

feasible actions in the current period, i.e., there is no explicit link between the periods. 

In a repeated game setting, firms would, of course, be more profitable if they could avoid the 

Prisoner’s Dilemma and move to a more cooperative equilibrium. Therefore, formulating the 

pricing game as a multi-period problem may identify strategies under which firms achieve a 

cooperative equilibrium, where competing firms may not lower prices as much as they would 

have otherwise in a one-shot Prisoner’s Dilemma. As another example, in an information sharing 
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context, Özer, Zheng, and Chen (2009) discuss the importance of trust and determine that 

repeated games enhance trust and cooperation among players. Such cooperative equilibria may 

also occur if the game is not guaranteed to be repeated, but may be repeated with some 

probability.   

A robust approach in such contexts is the “tit-for-tat” strategy, where one firm begins 

with a cooperative pricing strategy and subsequently copies the competing firm’s previous move. 

This strategy is probably the best known and most often discussed rule for playing the Prisoner’s 

Dilemma in a repeated setting, as illustrated by Axelrod and Hamilton (1981), Axelrod (1984), 

and also discussed in Dixit and Nalebuff (1991). In his experiment, Axelrod set up a computer 

tournament in which pairs of contestants repeated the two-person prisoner’s dilemma game 200 

times.  He invited contestants to submit strategies, and paired each entry with each other entry. 

For each move, players received three points for mutual cooperation and one point for mutual 

defection. In cases where one player defected while the other cooperated, the former received 

five points while the latter received nothing. Fourteen of the entries were from people who had 

published research articles on game theory or the Prisoner’s Dilemma. The tit-for-tat strategy 

(submitted by Anatol Rapoport, a mathematics professor at the University of Toronto), the 

simplest of all submitted programs, won the tournament.  Axelrod repeated the tournament with 

more participants and once again, Rapoport’s tit-for-tat was the winning strategy (Dixit and 

Nalebuff 1991).  

Axelrod’s research emphasized the importance of minimizing echo effects in an 

environment of mutual power. Although a single defection may be successful when analyzed for 

its direct effect, it also can set off a long string of recriminations and counter-recriminations, and, 
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when it does, both sides suffer. In such an analysis, tit-for-tat may be seen as a punishment 

strategy (sometimes called a trigger strategy) that can produce a supportive collusive pricing 

strategy in a non-cooperative game.  Lal’s (1990a) analysis of price promotions over time in a 

competitive environment suggests that price promotions between national firms (say Coke and 

Pepsi) can be interpreted as a long run strategy by these firms to defend market shares from 

possible encroachments by store brands. Some anecdotal evidence from the beverage industry in 

support of such collusive strategies is available. For example, a Consumer Reports article (Lal, 

1990b) noted that in the soft-drink market, where Coca Cola and PepsiCo account for two-thirds 

of all sales, “[s]urveys have shown that many soda drinkers tend to buy whichever brand is on 

special. Under the Coke and Pepsi bottlers’ calendar marketing arrangements, a store agrees to 

feature only one brand at any given time. Coke bottlers happened to have signed such 

agreements for 26 weeks and Pepsi bottlers the other 26 weeks!” In other markets, such as 

ketchup, cereals, and cookies (Lal, 1990b), similar arrangements can be found.  Rao (1991) 

provides further support for the above finding and shows that when the competition is 

asymmetric, the national brand promotes to ensure that the private label does not try to attract 

consumers away from the national brand.   

3.2 Behavioral Considerations in Games 

We now step back and ask if our game theory models provide us with a sufficiently accurate 

representation of actual behavior.  Behavioral considerations can be important for both static 

games and for repeated games, where relationships develop between players, leading to subtle 

and important consequences. 
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The assumptions we laid out at the beginning of Section 2 – rational players and the 

infinite belief hierarchy – can sometimes seem far-fetched when we consider real human 

interactions.  Given that the underlying assumptions may not be satisfied, are the predicted 

results of the games reasonable?  When describing research on human behavior in games, 

Camerer (2003) states, 

“ …game theory students often ask: “This theory is interesting…but do people 

actually play this way?’ The answer, not surprisingly, is mixed.  There are no 

interesting games in which subjects reach a predicted equilibrium immediately.  And 

there are no games so complicated that subjects do not converge in the direction of 

equilibrium (perhaps quite close to it) with enough experience in the lab.” 

Camerer and his colleagues have found that to accurately predict human behavior in games, the 

mathematics of game theory must often be merged with theories of behavior based on models of 

social utility (e.g., the concept of fairness), limitations on reasoning, and learning over time.  The 

result of this merger is the fast-growing field of behavioral economics and, more specifically, 

behavioral game theory. 

Behavioral game theory can shed light on a problem we saw in Section 2.4: when there is 

more than one equilibrium in a game, it is difficult to predict player behavior.  Psychologists and 

behavioral game theorists have tested how player behavior evolves over many repetitions of such 

games. According to Binmore (2007), over repeated trials of games with multiple equilibria 

played in a laboratory, the players’ behavior evolves towards particular equilibria because of a 

combination of chance and “historical events.” These events include the particular roles ascribed 

to each player in the game (e.g., an employer and a worker, equal partners, etc.), the social norms 
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that the subjects bring into the laboratory, and, most importantly, the competitive strategies that 

each player has experienced during previous trials of the game. Binmore also describes how, by 

manipulating these historical events, players can be directed to non-equilibrium “focal points,” 

although when left to their own devices players inevitably move back to a Nash equilibrium.   

Behavioral game theorists have also conducted laboratory tests of the specific pricing 

games that we describe in this chapter.  For example, Duwfenberg and Gneezy (2000) simulated 

the Bertrand game of Section 2.1 by asking students in groups of 2, 3 or 4 to bid a number from 

2 to 100.  The student with the lowest bid in the group won a prize that was proportional to the 

size of that student’s bid.  Therefore, the experiment is equivalent to the one-period Bertrand 

pricing game of Section 2.1, in that the lowest price (or ‘bid’ in the experiment) captures the 

entire market.  This bid-reward process was repeated 10 times, with the participants in each 

group randomized between each of the 10 rounds to prevent collusive behavior - as described in 

the previous Section of this Chapter - that may be generated in repeated games with the same 

players.   

No matter how many competitors, the Nash equilibrium in this game is for all players to 

bid 2, which is equivalent to pricing at marginal cost in the Bertrand game.  Duwfenberg and 

Gneezy found that when their experiments involved two players, however, the bids were 

consistently higher than 2 (over two rounds of ten trials each, the average bid was 38, and the 

average winning bid was 26).  For larger groups of 3 and 4, the initial rounds also saw bids 

substantially higher than the Nash equilibrium value of 2, but by the tenth round the bids did 

converge towards 2.  
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Camerer (2003) describes hundreds of experiments that demonstrate how actual player 

behavior can deviate from the equilibrium behavior predicted by classical, mathematical game 

theory.   He also shows how behavioral economists have gone a step further, to explicitly test the 

accuracy of behavioral explanations for these deviations, such as bounded rationality or a 

preference for fairness.   

A great majority of experiments conducted by behavioral game theorists involve 

experimental subjects under controlled conditions.  Of course, actual pricing decisions are not 

made by individuals in laboratories, but by individuals or groups of people in firms, who are 

subject to a variety of (sometimes conflicting) financial and social incentives.  Armstrong and 

Huck (2010) discuss the extent to which these experiments may be used to extrapolate to firm 

behavior.  An alternate to laboratory experiments is an empirical approach, to observe actual 

pricing behavior by firms and compare those prices with predictions made by game theory 

models.  We will return to the question of game theory’s applicability, and see an example of this 

empirical approach, in Section 3.6.  In addition, Ozer and Zheng [this volume] discuss many 

issues related to behavioral game theory. 

3.3 State-Dependent Dynamic Pricing Games  

State-dependent dynamic pricing games are a generalization of repeated games, in which the 

current period payoff may be a function of the history of the game.   

In a dynamic game, a state variable is a quantity that (i) defines the state of nature, (ii) depends 

on the decision or control variables, and (iii) impacts future payoffs (e.g., sales or profitability). 
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In a state-dependent dynamic game, there is an explicit link between the periods, and past 

actions influence the payoffs in the current period. 

In other words, pricing actions today will have an impact on future sales as well as sales today. 

We are taught early in life about the necessity to plan ahead. Present decisions affect future 

events by making certain opportunities available, precluding others, and altering the costs of still 

others. If present decisions do not affect future opportunities, the planning problem is trivial; one 

need only make the best decision for the present. The rest of this section deals with solving 

dynamic pricing problems where the periods are physically linked while considering the impact 

of competition. 

In their pioneering work, Rao and Bass (1985) consider dynamic pricing under 

competition where the dynamics relate primarily to cost reductions through experience curve 

effects.  This implies that firms realize lower product costs with increases in cumulative 

production.  It is shown that with competition, dynamic pricing strategies dominate myopic 

pricing strategies.  

The Table 7 illustrates the impact of dynamic pricing under competition relative to a 

static, two-period competitive game. 

 Static Dynamic 

Period 1 Equilibrium Price $2.00 $1.85 

Period 2 Equilibrium Price $1.90 $1.80 

Table 7: Static vs. Dynamic Pricing Example 
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 In other words, while a static game may suggest an equilibrium price of, say, $2.00 per 

unit for a widget in the first period and $1.90 in the second period, a dynamic game would 

recommend a price that is less than $2.00 (say, $1.85) in period 1 and even lower than $1.90 

(say, $1.80) in the period 2. This is because a lower price in the first period would increase sales 

in that initial period, thus increasing cumulative production, which, in turn, would reduce the 

marginal cost in the second period by more than the amount realized under a static game. This 

allows for an even lower price in the second period. In such a setting, prices in each period are 

the control (or decision) variables, and cumulative sales at the beginning of each period would be 

considered a state variable that affects future marginal cost and, hence, future profitability.  

Another pricing challenge involving state dependence is the management of reference 

prices.  A reference price is an anchoring level formed by customers, based on the pricing 

environment. Consider P&G’s value pricing strategy discussed earlier in the chapter. In such a 

setting, given the corresponding stable cost to a retailer from the manufacturer, should competing 

retailers also employ an everyday low pricing strategy or should they follow a High-Low pricing 

pattern?  In addition, under what conditions would a High-Low pricing policy be optimal? The 

answer may depend upon the impact reference prices have on customer purchase behavior. One 

process for reference-price formation is the exponentially smoothed averaging of past observed 

prices, where more recent prices are weighted more than less recent prices (Winer 1986): 

 ,െ1,  0 ≤ α < 1ݐ݌ሻߙെ1 ൅ ሺ1െݐݎߙൌݐݎ

where rt is the reference price in period t, rt-1 is the reference price in the previous period, and pt-1 

is the retail price in the previous period.  
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If  = 0, the reference price in period t equals the observed price in period t-1. As  

increases, rt becomes increasingly dependent on past prices. Thus,  can be regarded as a 

memory parameter, with  = 0 corresponding to a one-period memory. Consider a group of 

frequently purchased consumer brands that are partial substitutes.  Research (Winer 1986; 

Greenleaf 1995; Putler 1992; Briesch, Krishnamurthi, Mazumdar, and Raj 1997; Kalyanaram 

and Little 1994) suggests that demand for a brand depends on not only the brand price but also 

whether that brand price is greater than the reference price (a perceived loss) or is less than the 

reference price (a perceived gain). It turns out that the responses to gains and losses relative to 

the reference price are asymmetric. First, a gain would increase sales and a loss would decrease 

sales. Second, in some product categories, the absolute value of the impact of a gain is greater 

than that of a loss, and in yet other categories, it is the opposite. In this scenario, since past and 

present prices would impact future reference prices, prices can be considered control variables 

and consumer reference prices would be state variables, which then impacts future sales. In a 

competitive scenario, this might lead to a dynamic pricing policy, and this rationale differs from 

other possible explanations for dynamic pricing, such as heterogeneity in information among 

consumers (Varian, 1980), transfer of inventory holding costs from retailers to consumers 

(Blattberg, Eppen, and Lieberman, 1981), brands with lower brand loyalty having more to gain 

from dynamic pricing (Raju, Srinivasan, and Lal, 1990), and a mechanism for a punishment 

strategy (Lal, 1990b).  

Consider a dynamic version of the one-period model of Section 2.3.  In this version, a 

brand’s sales is affected by its own price, the price of the competing brand, and the reference 

price. Demand for brand i, i = 1,2, in time t is given by:  
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  ሻݐ݅݌െݐ݅ݎ൅ gi ሺݐ݆݌൅ܿ݅ݐ݅݌ൌܽ݅െܾ݅ݐ݅݀

Where gi =  if rit > pit, else gi = . 

Ignoring fixed costs, the objective function for each competitor i is to maximize the 

discounted profit stream over a long-term horizon—i.e.,  

max
௣೔೟

෍ߚ௧ሺ݌௜௧ െ ܿሻ݀௜௧

ஶ

௧ୀଵ

  

Where, 

t = time 

 = discount rate (between 0 and 1) 

pit = price 

c = marginal cost 

dit = demand for competitor i’s product in time t 

This problem can be solved using a dynamic programming approach (Bertsekas, 1987) in a 

competitive setting, where each competitor maximizes not just today’s profits but today’s profit 

plus all the future profits by taking into consideration how today’s pricing would impact 

tomorrow’s reference price and, hence, tomorrow’s profitability (Kopalle et al., 1996).  

Of course, each player cannot ignore the actions of competing players when solving this 

optimization problem, and we are interested in the players’ equilibrium behavior.  The specific 

type of equilibrium we use here is the subgame perfect equilibrium we defined for the 
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Stackelberg game in Section 2.5, but now applied to a more general dynamic game (also see 

Fudenberg and Tirole, 1991).  That is, a strategy is a sub-game perfect equilibrium if it 

represents a Nash equilibrium of every sub-game of the original dynamic game.  

Now we discuss the results of this model and distinguish two possible cases. One is 

where customers care more about gains than losses—i.e., the impact of a unit gain is greater than 

that of a unit loss ( >  Such was the case in Greenleaf’s (1995) analysis of peanut butter 

scanner data. In such a situation, in a monopoly setting Greenleaf (1995) finds that the sub-game 

perfect Nash equilibrium solution is to have a cyclical (High-Low) pricing strategy.  In a 

competitive setting, Kopalle, Rao, and Assunção (1996) extend this result and show that the 

dynamic equilibrium pricing strategy is High-Low as shown in Figure 3. 

 

Figure 3: Equilibrium Prices Over Time 

The other case is where customers are more loss averse (e.g., as found by Putler (1992) in the 

case of eggs)—i.e., the impact of a loss is greater than that of a corresponding gain ( > ). It 
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turns out that the Nash equilibrium solution is to maintain a constant pricing policy for both 

competitors. These results hold in an oligopoly consisting of N brands as well.  Table 8 shows 

the two-period profitability of two firms in a duopoly.  The first and second numbers in each cell 

refer to Firm 1’s and Firm 2’s profit over two periods.  For both firms, constant pricing is the 

dominant strategy, and the Nash equilibrium is a constant price in both periods: 

  Firm 2 Chooses… 

F
ir

m
 1

 C
h

oo
se

s.
. 

 

 Constant 
Pricing 

High-Low 
Pricing 

Constant 

Pricing 95
       

95

 100
       

90
 

High-Low 

Pricing 90
       

100

 90
       

90
 

 

Table 8: Expected payoffs for the reference price game. Entries in each cell are 

payoffs to 1, 2. 

In the more general case, where some consumers (say, segment 1) are loss averse (1>1) 

and others (say, segment 2) are gain seeking (2>2), Kopalle et al. (1996) find that in a 

competitive environment, a sufficient condition for a cyclical pricing policy to be a sub-game 

perfect Nash equilibrium is that the size of the gain seeking segment (i.e., non-loss-averse) 

segment is not too low.  As seen in Figure 4, as the relative level of loss-aversion in segment 1 

increases, i.e., (1-1)/(2-2) increases, the size of the gain seeking segment needs to be larger for 

High-Low pricing to be an equilibrium.  
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Figure 4: High-Low Equilibrium Pricing Policy and Share of Gain Seeking Segment 

Finally, note that reference prices may also be influenced by the prices of competing 

brands. The equilibrium solutions of High-Low dynamic pricing policies hold under alternative 

reference-price formation processes, such as the reference brand context, where the current 

period’s reference price is the current price of the brand bought in the last period. 

3.4 Open- Versus Closed-Loop Equilibria 

Two general kinds of Nash equilibria can be used to develop competing pricing strategies in 

dynamic games that are state-dependent: open loop and closed loop (Fudenberg and Tirole, 

1991). 

In a state-dependent dynamic game, an equilibrium is called an open-loop equilibrium if the 

strategies in the equilibrium strategy profile are functions of time alone. 
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In a state-dependent dynamic game, an equilibrium is called a closed-loop or a feedback 

equilibrium if strategies in the equilibrium strategy profile are functions of the history of the 

game, i.e., functions of the state variables. 

The notation in dynamic models must be adapted to whether open or closed-loop strategies are 

used.  Let Sit represent the ith state variable at time t, and let Pc denotes the pricing strategy of 

competitor c.  The notation Pc(t) indicates an open-loop strategy, while a function Pi(Sit, t) is a 

closed-loop strategy. 

With open-loop strategies, competitors commit at the outset to particular time paths of 

pricing levels, and if asked at an intermediate point to reconsider their strategies, they will not 

change them.  In an open-loop analysis of dynamic pricing in a duopoly, Chintagunta and Rao 

(1996) show that the brand with the higher preference level charges a higher price.  In addition, 

they find that myopic price levels are higher than the corresponding dynamic prices.  The authors 

also provide some empirical evidence in this regard by using longitudinal purchase data obtained 

from A. C. Nielsen scanner panel data on the purchases of yogurt in the Springfield, Missouri 

market over a two year period.  Their analysis focuses on the two largest, competing brands, 

Yoplait (6 oz) and Dannon (8 oz).  The empirical analysis shows that (i) the dynamic competitive 

model fits the data better than a static model, and (ii) the preference level for Dannon is 

noticeably higher than that for Yoplait.  The equilibrium retail prices per unit are given in Table 

9 under two different margin assumptions at the retailer. 
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Retail Margin Brand Dynamic Model Static Model 

40% Yoplait $0.46 $1.83 

40% Dannon $0.61 $1.08 

50% Yoplait $0.39 $1.72 

50% Dannon $0.55 $1.05 

Table 9: Open Loop Equilibrium Prices Versus Static Model Results 

It turns out that the actual prices were fairly close to the equilibrium prices generated by 

the dynamic model, while the equilibrium static model prices are inflated relative to both the 

dynamic model as well as reality.  Further, the higher preference level for Dannon is reflected in 

the higher pricing for the corresponding brand in the dynamic model results. The static model 

essentially ignores the evolution of consumer preference over time due to past purchases. 

One drawback of open-loop Nash equilibria is that fixed, open-loop strategies cannot be 

modified on the basis of, say, current market share. Pricing managers, however, are unlikely to 

put their strategies on automatic pilot and ignore challenges that threaten their market positions. 

There are plenty of instances of companies and brands responding to competitive threats to their 

market shares—for example, the “leapfrog” pricing of Coke and Pepsi at stores, where Coke is 

on sale one week and Pepsi on sale the next. Closed-loop equilibria are more realistic than open-

loop strategies because they do allow strategies to adjust to the current state of the market. 

Closed-loop equilibria, however, are harder to solve (Chintagunta and Rao 1996), and their 

analysis may require sophisticated mathematical techniques and approximations.  For example, 
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in an airline revenue management context, Gallego and Hu (2008) develop a game theoretic 

formulation of dynamically pricing perishable capacity (such as airplane seats) over a finite 

horizon.  Since such problems are generally intractable, the authors provide sufficient conditions 

for the existence of open-loop and closed-loop Nash equilibria of the corresponding dynamic 

differential game by using a linear functional approximation approach to the solution. Dudey 

(1992) and Martinez-de-Albeniz and Talluri (2010) also describe dynamic revenue management 

games. 

3.5 A Dynamic Stackelberg Pricing Game 

The Stackelberg game defined in Section 2.5 has been applied to the sequential pricing process 

involving manufacturers and retailers.  Initial research on this problem has focused on static 

Stackelberg games (Choi 1991; McGuire and Staelin 1983; Lee and Staelin 1997; Kim and 

Staelin 1999). In this game, the manufacturers maximize their respective brand profits, while the 

retailer maximizes its category profits, which include profits from sales of the manufacturer’s 

brand as well as other brands in that category. The decision variables are the wholesale and retail 

prices, where the manufacturer decides the wholesale price first and then the retailer determines 

the retail price. The models described in the references above, however, do not include 

promotional dynamics over time.  

To see how promotional dynamics can affect the game, consider a manufacturer that sells 

a single product (product 1) to a retailer.  The retailer sells both product 1 and a competing 

brand, product 2, to consumers.  Let  ݌ҧ௞ be the retailer’s regular, undiscounted price of product k 

= 1, 2, and let ݌௞௧ be the retailer’s chosen price in period t.  A promotion, a temporary price 

reduction in product k, can lead to an immediate increase in sales, which we will capture in the 
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demand function dkt defined below.  The promotion, however, may also have a negative impact 

on sales in future periods because consumers buy more than they need in period t (stockpiling), 

the discount may reduce brand equity, and/or the discount may reduce the product’s reference 

price.  We represent this effect of promotions in future periods with the term lkt, k=1, 2: 

 ݈௞௧ൌα݈௞,௧ିଵ൅ሺ1 െ αሻሺ݌ҧ௞ െ  ,௞௧ሻ݌ 0 ൑ α ൑ 1. 

We use lkt in the following retail-level demand function, to capture this lagged effect of 

promotions on both baseline sales and price sensitivity. For (j,k) = (1,2) or (2,1),  

݀௞௧ൌܽ௞ െ ൫തܾ௞ ൅ ܾ௞݈௞௧൯݌௞௧ ൅ ൫ܿҧ௞ ൅ ܿ௞ ௝݈௧൯݌௝௧ െ ݃௞݈௞௧. (2) 

The second term is the direct impact of product k’s price on demand, where the price sensitivity 

is adjusted by the lagged effect of promotion, ݈௞௧.  The third term is the impact of product j’s 

price on product k sales, adjusted by the effect of previous promotions for product j.  The last 

term is the lagged effect of product k promotions on baseline sales of product k (baseline sales 

are sales that would occur when there are no promotions). 

Now we describe the objective functions of the manufacturer and retailer.  Within each 

period t the manufacturer first sets a wholesale price ݓଵ௧ for product 1.   Given marginal product 

cost c1 and discount rate ߚ (and ignoring fixed costs), the manufacturer’s objective over a finite 

period t = 1…T is, 

max
௪భ೟

෍ߚ௧ሺݓଵ௧ െ ܿଵሻ݀ଵ௧.

்

௧ୀଵ
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Note that ݀ଵ௧ depends upon the prices ݌ଵ௧ and ݌ଶ௧ that are chosen by the retailer in each period t 

after the manufacturer sets its wholesale price.  The retailer’s objective is, 

max
௣భ೟,௣మ೟

෍ߚ௧෍ሺ݌௞௧ െ ௞௧ሻ݀ଵ௧ݓ

ଶ

௞ୀଵ

.

்

௧ୀଵ

  

Kopalle, Mela, and Marsh (1999) describe a more general version of this game, with any number 

of retailers, any number of competing brands, and controls for seasonality, features and displays.  

Their model also has an explicit term for the stockpiling effect, although when the model was fit 

to data, the direct stockpiling effect was not significant.  Finally, the model in Kopalle et al. 

(1999) differs in a few technical details, e.g., the expressions above are in terms of the logarithm 

of demand and price. 

This interaction between manufacturer and retailer is an example of a closed-loop, 

dynamic Stackelberg game. 

In a dynamic Stackelberg game, the leader and the follower make decisions in each period and 

over time based on the history of the game until the current period. 

In the one-period Stackelberg game of Section 2.5, the leader (in this case, the manufacturer) 

only anticipates the single response from the follower (the retailer).  In this dynamic game, the 

leader must anticipate the retailer’s reactions in all future periods.   Also, in the one-period game 

the follower simply responds to the leader’s choice – the decision is not strategic.  In this 

dynamic game, when the retailer sets its price in period t, the retailer must anticipate the 

manufacturer’s response in future periods.  As in our previous dynamic games, one can solve this 
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game using Bellman’s (1957) principle of optimality and backward induction. This procedure 

determines the manufacturer’s and retailer’s equilibrium pricing strategies over time. 

Before solving for the manufacturer’s and retailers’ strategies, Kopalle et al. (1999) 

estimate the parameters of the demand model, using one hundred twenty-four weeks of A. C. 

Nielsen store-level data for liquid dishwashing detergent.  The results suggest that when a brand 

increases use of promotions, it reduces its baseline sales; increases price sensitivity, thus making 

it harder to maintain margins; and diminishes its ability to use deals to take share from 

competing brands.  Figure 5 shows a typical equilibrium solution for manufacturer’s wholesale 

prices and the corresponding brand’s retail prices over time in the game.   

 

Figure 5: Equilibrium Wholesale and Retail Prices 

Kopalle et al. (1999) find that many other brands have flat equilibrium price paths, indicating 

that for these brands, the manufacturer and retailer should curtail promotion because the 
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immediate sales increase arising from the deal is more than eliminated by future losses due to the 

lagged effects of promotions. 

In practice, estimates of baseline sales and responses to promotions often ignore past 

promotional activity.  In other words, the lagged promotional effects ௝݈௧ and ݈௞௧ in demand 

function (2) are ignored.  To determine the improvement in profits due to using a dynamic model 

rather than a static model, one must compute the profits a brand would have had, assuming that it 

had estimated a model with no dynamic effects.  Comparing the static and dynamic Stackelberg 

solutions, Kopalle et al. (1999) find that the use of a dynamic model leads to a predicted increase 

in profits of 15.5 percent for one brand and 10.7 percent for another. These findings further 

suggest that managers can increase profits by as much as 7 percent to 31 percent over their 

current practices and indicate the importance of balancing the trade-off between increasing sales 

that are generated from a given discount in the current period and the corresponding effect of 

reducing sales in future periods.  

  Promotions may stem from skimming the demand curve (Farris and Quelch, 1987), from 

the retailer shifting inventory cost to the consumer (Blattberg et al., 1981), from competition 

between national and store brands (Lal, 1990a; Rao, 1991), or from asymmetry in price response 

about a reference price (Greenleaf 1995). Kopalle et al. (1999) show that another explanation for 

dynamic pricing exists: the trade-off between a promotion’s contemporaneous and dynamic 

effects.  
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3.6 Testing Game—Theoretic Predictions in a Dynamic Pricing Context: How Useful Is a 

Game-Theory Model? 

Prior research has illustrated some of the challenges of predicting competitive response. For 

example, a change by a firm in marketing instrument X may evoke a competitive change in 

marketing instrument Y (Kadiyali, Chintagunta, and Vilcassim, 2000; Putsis and Dhar, 1998). 

Another challenge is that firms may “over-react” or “under-react” to competitive moves 

(Leeflang and Wittink, 1996). Furthermore, it is unclear whether managers actually employ the 

strategic thinking that game theoretic models suggest.  Research by Montgomery, Moore, and 

Urbany (2005) indicates that managers often do not consider competitors’ reactions when 

deciding on their own moves, though they are more likely to do so for major, visible decisions, 

particularly those pertaining to pricing.  Therefore, it is reasonable to ask whether game-theory 

models can be useful when planning pricing strategies and whether they can accurately predict 

competitor responses.  Here we describe research that examines whether the pricing policies of 

retailers and manufacturers match the pricing policies that a game theory model predicts.  The 

research also examines whether it is important to make decisions using the game theory model 

rather than a simpler model of competitor behavior, for example, one that simply extrapolates 

from previous behavior to predict competitor responses. 

In one research study, Ailawadi, Kopalle, and Neslin (2005) use a dynamic game theory 

model to consider the response to P&G’s “value pricing” strategy, mentioned at the beginning of 

this chapter. The high visibility of P&G’s move to value pricing was an opportunity to see 

whether researchers can predict the response of competing national brands and retailers to a 

major policy change by a market leader. The researchers empirically estimate the demand 
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function that drives the model, substitute the demand parameters into the game theoretic model, 

and generate predictions of competitor and retailer responses. To the extent their predictions 

correspond to reality, they will have identified a methodological approach to predicting 

competitive behavior that can be used to guide managerial decision making. 

Ailawadi et al. (2005) base their game theoretic model on the Manufacturer-Retailer 

Stackelberg framework similar to Kopalle et al. (1999), described in Section 3.5. Their model is 

significantly more comprehensive in that it endogenizes (a) the national brand competitor’s price 

and promotion decisions; (b) the retailer’s price decision for P&G, the national brand competitor, 

and the private label; (c) the retailer’s private-label promotion decision; and (d) the retailer’s 

forward-buying decision for P&G and the national brand competitor. This model of the process 

by which profit-maximizing agents make decisions includes temporal response phenomena and 

decision making. In this sense, it is a “dynamic structural model.” Such models are particularly 

well suited to cases of major policy change because they are able to predict how agents adapt 

their decisions to a new “regime” than are reduced-form models that attempt to extrapolate from 

the past (Keane, 1997). However, they are more complex and present researchers with the thorny 

question of how all-encompassing to make the model.  

To develop their model, Ailawadi et al. (2005) use the scanner database of the 

Dominick’s grocery chain in Chicago and wholesale-price and trade-deal data for the Chicago 

market from Leemis Marketing Inc. Data were compiled for nine product categories in which 

P&G is a player. Dominick’s sold a private label brand in six of these nine categories throughout 

the period of analysis. The number of brands for which both wholesale and retail data are 

available varies across categories, ranging from three to six. In total, there were 43 brands across 
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the nine categories (nine P&G brands, 28 national brand competitors, and six private label 

competitors). 

 Dynamic Game Theoretic 

Model 

Statistical Model of 

Competition Dynamics 

 

Deal 

Amount 

Wholesale

Price  

Retail 

Price 

 

Deal 

Amount 

Wholesale 

Price 

Retail 

Price 

% Directionally Correct 

Predictions 

 

78% 71% 78% 52% 48% 55% 

% Directionally Correct 

Predictions When Actual 

Values Increased 

79% 50% 87% 46% 25% 64% 

% Directionally Correct 

Predictions When Actual 

Value Decreased 

77% 93% 65% 60% 67% 36% 

Table 10: Predictive Ability of A Dynamic Game-Theoretic Model  

Versus A Statistical Model Competition Dynamics 

As seen in Table 10, their results show that a game theoretic model combined with strong 

empirics does have predictive power in being able to predict directional changes in wholesale 

deal amount given to the retailer by the manufacturer, wholesale price, and retail price.  The 
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predictive ability of the directional changes ranges from 50% to 93%.  The table shows that of 

the times when the game theoretic model predicted that competitors would increase wholesale 

deal amount, competitors actually increased it 79% of the time.  This compares with correct 

predictions of 46% for the statistical model of competitor behavior, which is essentially is a 

statistical extrapolation of past behavior. The predictions of another benchmark model, where the 

retailer is assumed to be non-strategic, does no better with 46% correct predictions. 

Their model’s prescription of how competitors should change wholesale price and trade 

dealing and how the retailer should change retail price in response to P&G’s value-pricing 

strategy is a significant predictor of the changes that competitors and Dominick’s in the Chicago 

market actually made. This suggests that, in the context of a major pricing policy change, 

managers’ actions are more consistent with strategic competitive reasoning than with an 

extrapolation of past reactions into the future or with ignoring retailer reaction.  

In the wake of its “Value Pricing” strategy, it turns out that P&G suffered a 16% loss in 

market share across 24 categories (Ailawadi, Lehmann, and Neslin 2001).  If P&G’s managers 

had built a dynamic game theoretic model, they might have been able to predict (at least 

directionally) the categories in which the competitors would follow suit versus retaliate.  This 

could have helped P&G to adopt a more surgical approach to its value pricing strategy instead of 

a blanket strategy that cut across many categories. 

The above test was for a major policy change and the findings support the view of 

Montgomery et al. (2005) that when faced with highly visible and major decisions, especially 

with respect to pricing, managers are more likely to engage in strategic competitive thinking. It 

also supports the premise that when the agents involved are adjusting to a change in regime, 
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structural models are preferable to reduced-form models. Other approaches such as the reaction 

function approach (Leeflang and Wittink 1996) or a simplified game-theoretic model (for 

example, assuming that the retailer is non-strategic and simply uses a constant mark-up rule for 

setting retail prices) may have better predictive ability for ongoing decisions and week-to-week 

or month-to-month reactions where managers are less likely to engage in competitive reasoning.  

4. Implications for Practice 

Firms have many opportunities to increase profitability by improving the way they manage price. 

Many need better systems, such as enterprise software to manage strategy effectively and 

optimize execution to support their decisions. Vendors provide tools that monitor customer 

demand and measure how price is perceived compared to other retailers, helping to optimize 

pricing. Assortment and space-optimization tools help retailers manage their merchandise and 

shelf space, but these tools lack sophisticated predictive analytics. Although retailers can access 

a range of data, such as point-of-sale, packaged goods product information, competitor prices, 

weather, demographics, and syndicated market data, they do not have the tools they need to 

integrate all these data sources to manage strategies and optimize price in a competitive setting.  

In particular, current pricing systems do not incorporate the strategic impact of pricing changes – 

the dynamics described by game theory.  The flowchart of Figure 6 is adapted from Kopalle et 

al. (2008), and envisions a pricing system with modules that incorporate data-driven competitive 

analysis.  In the diagram, the “Strategic Framework” module contains the underlying model of 

competition, and is driven by data on competitors. 

The analysis conducted in the Strategic Framework module would focus on a variety of 

questions, guided by the models introduced in this chapter.  In Table 11 we lay out the 
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frameworks, using this chapter’s taxonomy of models.  For the simultaneous, one-shot pricing 

games in Box 1 (Nash games), the impact of product differentiation, and whether the products 

are substitutes or complements become important issues to consider.  As discussed earlier in the 

chapter, there are advantages of moving first, thereby changing the game from a simultaneous to 

sequential game.   For the one-period sequential (Stackelberg) game in Box 2, while  the 

questions for Box 1 are still relevant, it is also important for a firm to recognize whether it is a 

leader or follower.  If it is a leader, it should anticipate the followers’ reactions to its moves.  If a 

follower, a firm should determine if it is advantageous to become a leader (sometimes it is not), 

and consider how.   

Figure 6: Pricing algorithm 
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Box 1: Static (one-shot) 

Nash games 
2: Stackelberg games 

Multiple 
3: Repeated and dynamic 

games 

4: Dynamic Stackelberg 

games 

Table 11: Strategic frameworks 

Box 1’s questions also apply to Box 3, which refers to simultaneous games over multiple 

periods. Here firms should also consider the degree to which their competitors take a strategic, 

forward-looking view. In addition, recall that in a retail application, the optimal strategy is 

determined by the degree to which reference prices influence customer purchasing behavior, as 

well as the strength of loss aversion among customers.  Finally, we saw that when players repeat 

a game over multiple periods, trigger strategies (such as tit-for-tat) may be important.  In box 4, 

leaders in dynamic Stackelberg games should consider the impact of promotions on followers’ 

actions and on future profits.  In contrast to the single-period game, followers cannot ignore the 

future; they should consider the impact of their actions on leaders’ actions in later periods.   

For all of these environments (boxes 1-4), fruitful application of game theory to pricing 

requires that a firm understand its competitions’ pricing strategy.  For retailers in particular, the 

impact of competition has been well documented (Lal and Rao, 1997; Moorthy, 2005; Bolton 

and Shankar, 2003; Shankar and Bolton, 2004), but a lack of knowledge of their competitors’ 



54 

 

prices and strategies hinder retailers.  Such knowledge is usually difficult to obtain, and that is 

one reason why firms either (i) implement pricing systems that do not attempt to take competitor 

strategies directly into account (perhaps by assuming that competitors’ current actions will not 

change in the future), or (ii) implement simple, myopic strategies, given competitors’ actions.   If 

all firms in an industry choose (i), then they are still implicitly playing a game – they are 

responding to their competitors’ actions indirectly, using information obtained by measuring 

changes in their own demand functions.   Recent research has shown that strategies based on 

models that ignore competitors’ actions can lead to unpredictable, and potentially suboptimal, 

pricing behavior (e.g., see Cooper et al. (2009)).  If all firms in an industry choose (ii), however, 

the results depend upon the myopic strategy.  If firms only match the lowest competitor price 

(and, say, ignore product differentiation), then firms simply drive prices down.  There is a stream 

of research that shows that firms in an oligopoly who choose the "best response" to the current 

prices of their competitors will result in a sequence of prices that converges to the unique Nash 

equilibrium from the simultaneous game (Gallego et al., 2006). 

The models and frameworks presented in this chapter are most useful when a firm can 

understand and predict its competitors’ pricing strategies.   With improving price visibility on the 

web and masses of data collected by retail scanners, there is much more data available about 

competitors.  Market intelligence services and data scraping services collect and organize such 

information.  Examples include QL2.com for the travel industries and Information Resources 

Inc. for the consumer packaged goods industry.   In the retailing world, some firms use hand held 

devices to track competitors’ prices of key items. 
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It is difficult, however, to distill raw data into an understanding of competitor strategy.  In 

some industries, conferences can serve to disseminate price strategy information.  In the airline 

industry, for example, revenue management scientists attend the AGIFORS conference 

(sponsored by the Airline Group of the International Federation of Operational Research 

Societies) and share information about their pricing systems (this is not collusion – participants 

do not discuss prices, pricing tactics, or pricing strategies but do discuss models and algorithms).  

Consider another example from outside the airline industry: when one major firm implemented a 

revenue management system, they were concerned that their competitors would interpret their 

targeted local discounting as a general price "drop" and that a damaging price war would ensue.  

A senior officer of the firm visited various industry conferences to describe revenue management 

at a high level to help prevent this misconception on the part of the competitors. In the abstract, 

such information may be used to design pricing systems that are truly strategic.   

Of course, game theory motivates us to ask whether providing information about our 

pricing system to a competitor will improve our competitive position.   There are certainly games 

where knowledge shared between competitors can improve performance for both players: 

compare, for example, the one-shot prisoner’s dilemma (with its equilibrium in which both 

‘confess’) with a repeated game in which competitors anticipate each others’ strategies and settle 

into an equilibrium that is better for both.  

In general, our hope is that this chapter will help nudge managers toward making 

analytics-based pricing decisions that take into account competitor behavior.  Further, our view 

is that a significant barrier to the application of game theory to pricing is the extent to which 

mathematical and behavioral game theory, developed at the individual level, is not applicable to 
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firm-level pricing decisions.  In particular, a pricing decision is the outcome of group dynamics 

within the firm, which can be influenced by a range of factors that are different from factors that 

drive individual behavior.  Recall from this chapter the research on individual behavior in 

laboratory pricing games (e.g., Duwfenberg and Gneezy, 2000; Camerer, 2003) as well as one 

attempt to empirically validate a game theory model of pricing at the firm level (Ailawadi et al., 

2005).  There has been little research in between these extremes.   More work is needed to 

identify the general characteristics of firms’ strategic pricing behavior, and we believe that there 

is a significant opportunity for research to bridge this gap. 
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