Disruptive technologies and the emergence of competition

Ron Adner∗
and
Peter Zemsky∗

We formalize the phenomenon of disruptive technologies that initially serve isolated market niches and, as they mature, alter industry boundaries by displacing established technologies from mainstream segments. Using a model of horizontal and vertical differentiation, we show how the threat of disruption depends on rates of technological advance, how many firms use each technology, relative market segment sizes, and firms’ ability to price discriminate. We characterize the effect of disruption on prices, market shares, social welfare, and innovation incentives. We show that the possibility that mergers trigger disruption and thereby alter industry boundaries is important for assessing their impact on social welfare and profits.

1. Introduction

New technologies are often commercialized in a specialized niche. Some stay in their niche, while others go on to penetrate mainstream segments and compete with incumbent technologies. Although this phenomenon has received little attention in formal theory, it has long been studied by historians of technology (e.g., Basalla, 1988), economic historians (e.g., Rosenberg, 1976), and business and marketing strategists (e.g., Foster, 1986; Moore, 1991). The emergence of technology competition has risen to particular prominence as a result of Christensen’s inductive work (1997), which begins with his analysis of the hard disk drive industry. Consider the following characterization:

In 1985, the hard disk drive market for personal computers was divided into two segments: desktop computer users who cared about capacity, and portable computer users who cared about both capacity and portability. A 5.25-inch hard disk technology, which offered higher capacity than the 3.5-inch alternative, was used in the desktop segment.1 The 3.5-inch hard drives, which were smaller and more energy efficient, served the emerging market for portable computers. Thus, the two technologies were initially isolated, each limited to serving consumers in a different market segment. With time, the performance of both technologies improved, but the 5.25-inch drives always offered significantly higher capacity than the 3.5-inch drives. By 1988, however, the 3.5-

∗ INSEAD; ron.adner@insead.edu, peter.zemsky@insead.edu.

We thank seminar audiences at Harvard Business School, INSEAD, New York University, University College London, Wharton, and Yale, the Editor, and an anonymous referee for helpful comments.

1 Note that the product here is an internal hard disk drive, not a removable floppy disk drive.
inch drives had expanded beyond the portable segment to capture the low end of the desktop segment.

Christensen terms technologies like the 3.5-inch hard drives “disruptive technologies.” A disruptive technology offers a novel mix of attributes compared to the established technology, but it is inferior to the established technology according to the needs of consumers in the primary (mainstream) market segment. The disruptive technology is, therefore, initially purchased by consumers in a secondary (niche) market segment who place high value on the new technology’s attribute mix. As the new technology matures, its performance improves, but its perceived quality in the primary segment remains inferior to that of the established technology. Despite this performance inferiority, the new technology is able to enter the primary segment because the established technology is “oversupplying” customer needs. Christensen documents similar dynamics with a variety of technologies, including laser and inkjet printers, minimill and integrated steel plants, and hydraulic and steam-powered earthmoving equipment. For scholars, such disruptive technologies highlight the question of the boundaries of technology competition and how those boundaries change over time (Adner, 2002). For managers, disruptive technologies highlight the danger posed to incumbent firms from too quickly dismissing new technologies as inferior and therefore irrelevant to their market positions.²

We address three main research questions. First, we explore whether or not there is competition between two technologies, that is, whether or not a new technology is disruptive at a point in time. Second, we explore whether or not disruption is triggered by technological progress, due perhaps to performance oversupply, and if so, how long it takes a new technology to break out of its niche. In the initial excitement surrounding disruptive technologies, analysts and firms tended to see disruptive threats everywhere.³ That many of these threats did not materialize highlights the importance of distinguishing disruptive threats from technologies that will remain isolated in a niche. Finally, we consider the effects of disruption on competitive outcomes such as prices, social welfare, firm market shares, profitability, and innovation incentives.

In addition to identifying the phenomenon of disruption, Christensen (1997) observes that established firms face an “innovator’s dilemma” in that their internal resource-allocation processes lead them to systematically underinvest in disruptive technologies. In this article, our focus is on competitive dynamics rather than internal resource allocation. In an extension, however, we extend our model to consider the incentives of established firms to use a disruptive technology and show that not exploiting the new technology can be consistent with short-run profit maximization.

The emergence of technology competition has not been the focus of formal economic theorizing. While one can interpret the vast economics literature on product differentiation as being about technology competition—for example, different positions in a Hotelling model can be interpreted as arising from firms using different technologies—this literature takes as given the set of competing firms and relevant consumers. For example, the common assumption in spatial models that the market is covered implies that some consumers are always choosing between adjacent technologies and hence that the technologies are always in direct competition. In other words, the received literature assumes away the very question of whether or not two technologies compete.

We develop a model of horizontal and vertical differentiation that is well suited to studying the emergence of competition between distinct technologies. Consumers belong to one of two segments: a primary segment and a secondary segment. Segments differ in how they evaluate products and hence allow for horizontal product differentiation. Within a segment, products can be vertically differentiated. There are two product technologies, a new technology and an established technology. We consider Cournot competition in which there is an arbitrary number of firms using

² See, for example, Mack and Summer’s (1999) article about Christensen’s research and the challenge posed by disruptive technologies.

³ For example, consider the following quote from The Economist: “Starting with this issue, The Economist Technology Quarterly will offer readers a foretaste of what new developments are threatening—no, guaranteeing—to disrupt the way business is done in the years ahead” (December 9, 2000, p. 3).
each of the two technologies, and we allow firms to vary in their marginal costs. The source of
dynamics in the model is that consumers’ willingness to pay for the products increases over time
as the production technologies mature.

In considering our first question, whether there is competition between the two technologies,
we show that the threat of disruption is increasing in the number of new-technology firms, the
relative size of the primary segment, the primary segment’s utility from the new-technology
product, and the marginal costs of the established firms. We show that the threat of disruption is
decreasing in the number of established-technology firms, the secondary segment’s utility from the
new-technology product, the primary segment’s utility from the established-technology product,
and the marginal costs of the new-technology firms. The disruptive threat is greater when firms
can price discriminate across segments.

The intuition for many of these results comes from the fact that disruption occurs when
new-technology firms pursue a high-volume, low-price strategy that allows them to break into the
primary segment. Consider, for example, the intuition for the effect of marginal costs. The lower
the marginal costs of new-technology firms, the more attractive is a high-volume strategy and
hence the greater the threat of disruption by the new technology. On the other hand, the lower the
marginal costs of the established-technology firms, the greater their output and hence the lower
the scope for new-technology firms to increase their volumes by disrupting the primary market.
Hence, the lower the costs of established-technology firms, the lower the threat of disruption.

Despite the fact that disruption is associated with low costs for the new technology, we find
that the lowest-cost new-technology firm is not necessarily the one that initiates disruption. On
the one hand, the lowest-cost firm has the highest margins among new-technology firms, which
favors output expansion and hence disruption. On the other hand, the lowest-cost firm has the
highest market share in the secondary segment and hence the most to lose from the fall in price
that comes with disruption.

In considering the dynamics of disruption, we find that technology improvement can lead
to disruption. We model performance oversupply as reducing the established technology’s rate
of utility improvement relative to that of the new technology. We show that while performance
oversupply facilitates disruption, it is not necessary for it. We highlight the importance of market
structure (i.e., the number of firms using each technology) as an important driver of the dynamics
because it determines the extent to which consumer surplus from each technology increases over
time. All the factors that make disruption more likely at a point in time also serve to speed its
onset.

In considering the effects of disruption, we show that social welfare is unambiguously
increasing because prices for both products fall with disruption. We show that the profits of
new-technology firms need not increase with disruption because their increased volumes can be
more than offset by increased competition. Indeed, it is possible that established-technology firms
increase their output in response to disruption. We find that concentration tends to increase with
disruption because the effect of cost asymmetries on market share is amplified by the increased
number of competitors.

By identifying the drivers of technology competition, this article contributes to debates about
market definition that are often central in antitrust deliberations. The standard approach to market
definition is to focus on the degree of substitutability between products as measured by both own-
price and cross-price elasticities. This approach has been criticized as being inherently static and
hence unable to accommodate the possibility of future competition from alternative technologies
(Teece and Coleman, 1998). Our theory explicitly accounts for the emergence of technology
competition and characterizes its effect on competitive outcomes. Moreover, our model calls

4 An advantage of Cournot over Bertrand is that it allows for multiple firms using a single technology. With
Bertrand competition, one can have only a single firm of a given type (as otherwise there is marginal-cost pricing), and
hence one cannot readily address the effect of competition among firms using a given technology on the emergence of
competition between technologies.

5 See also the antitrust case Bourns, Inc. v. Raychem Corporation, U.S. District Court, Central District of Cal-
ifornia, Case No. CV 98-1765 CM and the associated discussion in Pleatsikas and Teece (2001) for problems with
into question standard results on the effects of mergers in Cournot models (Salant, Switzer, and Reynolds, 1983; Farrell and Shapiro, 1990). Prior work finds that, absent efficiency gains, mergers among Cournot competitors lower social welfare and reduce the profits of the merging firms unless the postmerger market structure is highly concentrated. In contrast, we show that neither of these results need hold when mergers can alter the boundaries of technology competition.

The article proceeds as follows. In Section 2 we describe the model. Section 3 presents important preliminaries, including the derivation of the demand function and a typology of the possible pure-strategy Nash equilibria. Section 4 characterizes the drivers of disruption at a point in time, while Section 5 discusses issues of equilibrium existence and uniqueness. In Section 6 we examine the effect of technology improvement on the emergence of competition. Section 7 characterizes the effects of disruption on competitive outcomes, and Section 8 looks at the implications for merger analysis. We extend the model in Section 9 to allow for multitechnology firms and price discrimination. Section 10 concludes. The proofs are split between Appendix A and a web Appendix available at www.rje.org/main/sup-mat.html. Mixed-strategy equilibria are discussed in Appendix B.

2. Model

There is a new technology (λ = N) and an established technology (λ = E), with \(n_1 \geq 1 \) firms using technology \(\lambda \). We assume each firm uses only one technology. Section 9 relaxes this assumption and looks at multi-technology firms. Firms vary in their cost of production. The marginal cost of production for the \(i \)th firm using technology \(\lambda \) is denoted by \(c_{i\lambda} \geq 0 \). Denote the average cost of firms using technology \(\lambda \) by \(\bar{c}_\lambda = (1/n_\lambda) \sum_{i=1}^{n_\lambda} c_{i\lambda} \).

There are two discrete market segments indexed by \(m = 1, 2 \). A consumer in segment \(m \) has a willingness to pay for the new product (i.e., a product made using the new technology) of \(u_{N_m} + d \) and a willingness to pay for the established product (i.e., a product made using the established technology) of \(u_{E_m} + d \). The first component of willingness to pay, \(u_{j_m} \), is the same for all consumers in a given segment and reflects product differentiation. The ordering of \(u_{E_m} \) and \(u_{N_m} \) captures vertical differentiation within segment \(m \). The ordering \(u_{j1} \) and \(u_{j2} \) captures horizontal differentiation (i.e., the extent to which consumers in different segments value the same product differently).

Differences in willingness to pay arise because segments vary in the weights they place on different product attributes and products vary in their attribute levels depending on the underlying production technology.\(^6\) Discrete segmentation is a good representation of horizontal differentiation in many settings, such as when the product is a component used in multiple end products (e.g., hard disk drives, which are used in notebook, desktop, and mainframe computers). Other examples of discrete consumer heterogeneity include personal versus professional users, industry segments (in business-to-business markets), and national markets.

The second component of willingness to pay, \(d \), varies across consumers within a segment and is independent of the product. In segment \(m \), we assume that \(d \) is uniformly distributed between \(-\infty \) and \(D \) with a density \(S_m > 0 \). \(S_m \) parameterizes the size of market segment \(m \). We make no restriction on relative segment size (i.e., it need not be that \(S_1 > S_2 \)). Without loss of generality, we assume that \(D = 0.7 \).

We consider Cournot competition and denote the output of firm \(i \) using technology \(\lambda \) by \(q_{i\lambda} \) and total outputs by \(Q_\lambda = \sum_{i=1}^{n_\lambda} q_{i\lambda} \). Firm profits are \(\pi_{Ni} = q_{N_i} (P_N (Q_N, Q_E) - c_{N_i}) \) and

\(^6\) An example of such dependence is the following. Consumer choice depends on two attributes, and technology \(\lambda \)’s performance on these attributes is given by \(x_\lambda \) and \(y_\lambda \). Utilities are \(u_{i\lambda} = (x_\lambda)^{\alpha_0} (y_\lambda)^{1-\alpha_0} \), where \(\alpha_0 \) reflects the relative weight placed on attribute \(x \) by segment \(m \).

\(^7\) Our specification of willingness to pay follows Katz and Shapiro (1985), but with two differences. First, whereas they study a single segment, we consider two segments. Second, whereas they assume that \(u_{j_m} \) arises from network externalities, we assume that it arises from segments’ valuation of product attributes.
\(\pi_{Ei} = q_{Ei}(P_E(Q_E, Q_N) - c_{Ei}) \), where \(P_s(\cdot, \cdot) \) are the inverse-demand functions. Thus, there is a single price for each product; Section 9 extends the analysis to the case of price discrimination across segments. We focus on the pure-strategy Nash equilibria of the model.

We assume that as products mature over time, their performance, and hence consumers’ willingness to pay for them, is nondecreasing. That is, \(u'_{jm}(t) \geq 0 \). Exogenous technological improvement, as in the literature on new-technology adoption (e.g., Fudenberg and Tirole, 1985), can have several sources, such as improving input quality and spillovers from R&D activities outside of the industry. In Section 7 we relax this assumption and explore innovation incentives within the model.

We make the following restrictions on the parameter space. Firms using the established technology create value only in segment 1; \(u_E \leq u_N \) if \(\lambda = 1 \). Consumers in segment 2 buy both products, they must be indifferent between the two products, and hence \(PE \geq PE \) if \(\lambda = 1 \). We are interested in the case where segment 2 is relevant to the analysis (i.e., the new product is sold to segment 2) and where both technologies compete for segment 1 (i.e., the new technology does not drive the output of established-technology firms to zero). Lemma 3 identifies parameter restrictions such that these conditions are satisfied. We do not require that the new technology be inferior to the established technology in segment 1. We simplify the analysis by restricting attention to small cost asymmetries across firms using the same technology (i.e., \(|c_e - c_i| \) not too large) such that all firms have positive output in equilibrium.

3. Preliminaries

In this section we derive inverse-demand functions, identify two possible pure-strategy Nash equilibria, and introduce definitions that link parameters to equilibrium existence.

Demand functions. We derive the inverse-demand functions, \(P_N(Q_N, Q_E) \) and \(P_E(Q_E, Q_N) \), by solving for the market-clearing prices for any given \(Q_N \) and \(Q_E \).

Given the restriction \(u_{E2} \leq \min c_{Ei} \), the established product is bought by consumers only in market segment 1. There are three possibilities for who buys the new product: only consumers in segment 2, only consumers in segment 1, and consumers in both segments.

Start with the case where the new product is bought by consumers only in segment 2. Consumers in segment 2 with \(d + u_{N2} - P_N \geq 0 \) buy the new product, and the measure of such consumers is \((u_{N2} - P_N)S_2 = Q_N \). Market clearing requires that \((u_{N2} - P_N)S_2 = Q_N \) and hence \(P_N = u_{N2} - Q_N/S_2 \) in this case. Similarly, the inverse-demand curve for the established product in this case is \(P_E = u_{E1} - Q_E/S_1 \). Under what conditions is the new product bought by consumers only in segment 2? It must be that consumers in segment 1 get a higher surplus from the established product than the new product, that is, \(u_{E1} - P_E \geq u_{N1} - P_N \) or \(Q_N/S_2 \leq Q_E/S_1 - (u_{N1} - u_{N2}) \).

Now consider the case where the new product is bought by consumers only in segment 1. Since consumers in segment 1 buy both products, they must be indifferent between them, and hence \(u_{E1} - P_E = u_{N1} - P_N \). Total demand is then \((u_{N1} - P_N)S_1 \), or equivalently \((u_{E1} - P_E)S_1 \), and market clearing gives \(P_N = u_{N1} - (Q_E + Q_N)/S_1 \) and \(P_E = u_{E1} - (Q_E + Q_N)/S_1 \). In order for no consumers in segment 2 to buy the new product, it must be that \(u_{N2} - P_N \leq 0 \), or equivalently \(Q_N/S_1 \leq u_{N1} - u_{N2} - Q_E/S_1 \).

Consider the final case where consumers in both segments buy the new product. Since consumers in segment 1 buy both products, they must be indifferent between the two products, and hence \(u_{E1} - P_E = u_{N1} - P_N \). Total demand for both products is now the demand from segment 1, \((u_{N1} - P_N)S_1 \), plus demand from segment 2, \((u_{N2} - P_N)S_2 \) and market clearing yields

\[
P_N = \frac{S_1 u_{N1} + S_2 u_{N2}}{S_1 + S_2} - \frac{Q_E + Q_N}{S_1 + S_2}
\]

The price of the established product is

\[
P_E = u_{N1} - u_{E1} + P_N = u_{E1} - \frac{S_2}{S_1 + S_2}(u_{N1} - u_{N2}) - \frac{Q_E + Q_N}{S_1 + S_2}.
\]
The conditions such that some consumers in segment 2 buy some but not all of the new product, \(0 < (u_{N2} - P_N)S_2 < Q_N\), are just the converses of the prior two conditions. We collect the above results in the following lemma.

Lemma 1. The inverse-demand functions are

\[
P_N(Q_N, Q_E) = \begin{cases}
 u_{N1} - \frac{Q_N}{S_1} & \text{if } \frac{Q_N}{S_1} \leq \frac{Q_N}{S_2} - (u_{N1} - u_{N2}), \\
 u_{N1} - \frac{Q_N + Q_E}{S_1} & \text{if } \frac{Q_N}{S_1} \leq (u_{N1} - u_{N2}) - \frac{Q_E}{S_1}, \\
 \frac{S_1u_{N1} + S_2u_{N2}}{S_1 + S_2} - \frac{Q_N + Q_E}{S_1 + S_2} & \text{otherwise.}
\end{cases}
\]

\[
P_E(Q_E, Q_N) = \begin{cases}
 u_{E1} - \frac{Q_E}{S_1} & \text{if } \frac{Q_E}{S_1} \geq \frac{Q_N}{S_2} + (u_{N1} - u_{N2}), \\
 u_{E1} - \frac{Q_N + Q_E}{S_1} & \text{if } \frac{Q_E}{S_1} \leq (u_{N1} - u_{N2}) - \frac{Q_N}{S_2}, \\
 \frac{S_2(u_{N1} - u_{N2})}{S_1 + S_2} - \frac{Q_E + Q_N}{S_1 + S_2} & \text{otherwise.}
\end{cases}
\]

Note that both demand functions are piecewise linear, that established product demand is weakly concave, and that new-product demand is weakly convex; see Figure 1.8

Because of the convexity in their demand function, equilibrium analysis needs to be concerned with both local and global optimality for new-technology firms. The emergence of competition between the technologies makes the demand curves for both types of product flatter. For new-technology firms, this is because additional new product output is spread over both segments. For established-technology firms, this is because additional established-technology output shifts new-product output into segment 2. With this flattening, best-response functions are not everywhere downward sloping. Figure 2 shows possible best-response functions of one new-technology firm to another (left) and of an established-technology firm to the total output of the new-technology firms (right).9 Consequently, in some regions outputs are strategic complements, rather than strategic substitutes.

Finally, note that \(P_E\) is weakly decreasing in \((u_{N1} - u_{N2})\), which determines the ease with which established-product output pushes the new product back into segment 2. Loosely, \((u_{N1} - u_{N2})\) reflects the extent to which new-technology firms are committed to segment 1.

\[\square\]

Pure-strategy Nash equilibria. We distinguish between two different types of equilibria.

Definition 1. The new technology is **disruptive** in some equilibrium if consumers in segment 1 and segment 2 buy the new product. The technologies are **isolated** in some equilibrium if consumers in segment 1 buy only the established product and consumers in segment 2 buy only the new product.

Referring back to Lemma 1, disruption arises from new-technology firms pursuing a high-output, and hence low-price, strategy; conversely, isolation involves these firms pursuing a low-volume, high-price strategy. Since the demand functions are piecewise linear and firm profits are \(\pi_i = q_i(P_i(Q, Q_{-i}) - c_i)\), pure-strategy Nash equilibria of our model are analogous to equilibria in a standard Cournot model with linear demand and asymmetric costs. Notice that in this type of model, differences in the demand intercept across types of firms, which arise from

8 The parameters used for the inverse-demand curves in Figure 1 are \(S_1 = 2, S_2 = 1, u_{N2} = u_{E1} = 5, u_{N2} = 4.75,\) and \(Q_E = 4\) (left) and \(Q_N = 3\) (right).

9 The parameter values used to generate the best-response functions in Figure 2 are \(u_{E1} = 5, u_{N1} = 3, u_{N2} = 4, c_{E1} = 2, c_{N1} = 1, n_E = 1, n_N = 2, S_2 = 1,\) and \(S_1 = 3\) (left) or \(S_1 = 1\) (right).
product differentiation, are equivalent to differences in marginal costs. Formally we have the following lemma.

Lemma 2. (i) There is a unique pure-strategy Nash equilibrium (PSNE) in which the technologies are isolated. Equilibrium outputs and profits in this equilibrium are

\[
q_{NI}^I = \frac{S_2}{n_N + 1} \left(u_{N2} - c_{Ni} + n_N(\bar{c}_N - c_{Ni}) \right),
\]
\[
q_{EI}^I = \frac{S_1}{n_E + 1} \left(u_{E1} - c_{EI} + n_E(\bar{c}_E - c_{EI}) \right),
\]
\[
\pi_{NI}^I = \frac{(q_{NI}^I)^2}{S_2},
\]
and
\[
\pi_{EI}^I = \frac{(q_{EI}^I)^2}{S_1}.
\]

(ii) There is a unique PSNE in which the new technology is disruptive and all the established firms still have positive output. Equilibrium outputs and profits in this equilibrium are

\[
q_{NI}^D = \frac{S_1 + S_2}{n_E + n_N + 1} \left(u_{N1} + u_{N2} + n_N(\bar{c}_N - c_{Ni}) + n_E[(u_{E1} - c_{Ni}) - (u_{E1} - \bar{c}_E)] \right),
\]
\[
q_{EI}^D = \frac{S_1 + S_2}{n_E + n_N + 1} \left[u_{E1} - c_{EI} + n_E(\bar{c}_E - c_{EI}) + n_N[(u_{E1} - c_{EI}) - (u_{E1} - \bar{c}_N)] - \frac{S_2(u_{N1} - u_{N2})}{S_1 + S_2} \right],
\]
\[
\pi_{NI}^D = \frac{(q_{NI}^D)^2}{S_1 + S_2},
\]
and
\[
\pi_{EI}^D = \frac{(q_{EI}^D)^2}{S_1 + S_2}.
\]

Proof. See Appendix A.
Henceforth we refer to the PSNE with \((q^D_{Ni}, q^D_{Ei})\) as the disruptive equilibrium \((\phi = D)\) and the PSNE with \((q^I_{Ni}, q^I_{Ei})\) as the isolated equilibrium \((\phi = I)\). It is useful to define total output in each of the equilibria by \(Q^{\phi}_N = \sum_{i=1}^{n_N} q^{\phi}_{Ni}\) and \(Q^{\phi}_E = \sum_{i=1}^{n_E} q^{\phi}_{Ei}\).

Consider the determinants of a new-technology firm’s output in the isolated equilibrium. Firm \(i\)’s output \(q^I_{Ni}\) depends in part on the size of segment 2 \((S_2)\) and the intensity of competition in the segment \((1/(n_N + 1))\). In addition, it is useful to relate equilibrium output to a firm’s value creation (Brandenburger and Stuart, 1996), which is the difference between a customer’s willingness to pay for a product and the production cost. Output \(q^I_{Ni}\) depends on a measure of absolute value creation \((u^2_N - c_{Ni})\) and of firm \(i\)’s value creation relative to all new-technology firms: \(n_N(u^2_N - c_{Ni}) - n_N(u^2_N - \bar{c}_N)\). The components of \(q^I_{Ei}\) have an analogous interpretation.

Now consider the disruptive-equilibrium outputs, \(q^D_{Ni}\) and \(q^D_{Ei}\). Because disruption effectively collapses the two segments into one market, equilibrium outputs depend on the size of the total market \((S_1 + S_2)\) and the overall intensity of competition \((1/(n_N + n_E + 1))\). Because the established technology is bought only in segment 1, \(q^D_{Ei}\) naturally depends on that technology’s value creation in segment 1 \((u^1_E - \bar{c}_E)\). Because the new technology is bought in both segments, \(q^D_{Ni}\) depends on a measure of absolute value creation across both segments \(((S_1 u^1_N + S_2 u^2_N)/(S_1 + S_2) - c_{Ni})\). The term \(n_N(\bar{c}_N - c_{Ni}) + n_E[(u^1_N - \bar{c}_N) - (u^1_E - \bar{c}_E)]\) is a new-technology firm’s relative value creation for segment 1 consumers. Similarly, \(q^D_{Ei}\) depends on the established-technology firm’s relative value creation in segment 1 \((n_E(\bar{c}_E - c_{Ei}) + n_N[(u^1_E - c_{Ei}) - (u^1_N - \bar{c}_E)])\). Finally, the output of established-technology firms depends on the level of new-technology firms’ commitment to segment 1 \((u^1_N - u^2_N)\).

We now restrict the parameter space so that the isolated and disruptive equilibria are the only two possible PSNE.

Lemma 3. A sufficient condition for the new product to be bought by some consumers in segment 2 in any Nash equilibrium is

\[
u^2_N > \frac{u^1_N + n_N \bar{c}_N}{n_N + 1}.
\]

Under this condition and \(\min_i q^D_{Ei} \geq 0\), the isolated and disruptive equilibria from Lemma 2 are the only possible PSNE.

10 As a measure of absolute value creation, \(u^2_N - c_{Ni}\) abstracts from the consumer-specific component of willingness to pay, \(d\).

11 Algebraically, \(q^D_{Ni}\) depends only on relative value creation in segment 1 because

\[
\frac{S_1 u^1_N + S_2 u^2_N}{S_1 + S_2} = \frac{S_2(u^2_N - u^1_N)}{S_1 + S_2} = u^1_N - u^1_E.
\]
Proof. See Appendix A.

Henceforth, we assume that (1) holds and that \(\min_i q^D_{Ei} \geq 0 \). Because \(u_{N2} > \bar{c}_N \), inequality (1) holds for \(n_N \) sufficiently large, as well as holding as long as \(u_{N1} \) is not too much greater than \(u_{N2} \).

Linking model parameter to equilibrium existence. In order to make precise statements about how the threat of disruption depends on parameters of the model, we introduce the following definitions.

Definition 2. The set of parameters that support an equilibrium is increasing (decreasing) in parameter \(x \) if existence for some \(x = x_1 \) implies existence for all \(x > x_1 (x < x_1) \), holding fixed the value of all other parameters.

Definition 3. The threat of disruption is increasing (decreasing) in some parameter if the set of parameters that support the disruptive equilibrium is increasing (decreasing) in the parameter and the set of parameters that support the isolated equilibrium is decreasing (increasing) in the parameter.

By construction, the equilibrium outputs \(q^\phi_i \) satisfy first-order conditions and hence are locally optimal.13 We now turn to global optimality. We denote the profit for the \(i \)th new-technology firm from its optimal deviation from the disruptive equilibrium onto the isolated part of the demand curve by

\[
\hat{\pi}^D_{Ni} = \max_q q \left(u_{N2} - \frac{Q^D_N - q^D_{Ni} + q}{S_2} - c_{Ni} \right),
\]

and we denote the optimal deviation by \(\hat{q}^D_{Ni} \). Analogously, we denote the profit for the \(i \)th new-technology firm from its optimal deviation from the isolated equilibrium onto the disruptive part of the demand curve by

\[
\hat{\pi}^I_{Ni} = \max_q q \left(\frac{S_1 u_{N1} + S_2 u_{N2}}{S_1 + S_2} - \frac{Q^I_N - q^I_{Ni} + q}{S_1 + S_2} - c_{Ni} \right),
\]

and we denote the optimal deviation by \(\hat{q}^I_{Ni} \). We denote the change in profit by

\[
\Delta^\phi_{Ni} = \hat{\pi}^\phi_{Ni} - \pi^\phi_{Ni}.
\]

Lemma 4. A sufficient condition for the set of parameters that support equilibrium \(\phi = D, I \) to be increasing (decreasing) in some parameter \(x \) is that the following holds for all \(i \): \(\partial \Delta^\phi_{Ni} / \partial x \leq (\geq) 0 \) for any set of parameters such that \(\Delta^\phi_{Ni} = 0 \).

Proof. See the web Appendix.

4. The drivers of disruption

The threat of disruption posed by the new technology varies as follows.

Proposition 1.

(i) The threat of disruption is increasing in \(u_{N1}, c_{Ei} \), and \(S_1 \) and decreasing in \(u_{N2}, u_{E1}, \)

and \(S_2 \).

12 Note that inequality (1) is a sufficient but not necessary condition because the derivation assumes that \(Q_E = 0 \) and hence our analysis holds for even lower values of \(u_{N2} \).

13 Note that local optimality requires that total outputs lie on the appropriate part of the demand function. The condition for global optimality assures that this is the case.

© RAND 2005.
(ii) When \(c_{ni} = c_N \) for all \(i \), the threat of disruption is increasing in \(n_N \); when \(c_{ei} = c_E \) for all \(i \), the threat of disruption is decreasing in \(n_E \).

Proof. See the Web Appendix.

The intuition for the results in Proposition 1 comes from the fact that disruption occurs when new-technology firms find it profitable to expand from the secondary to the primary segment by pursuing a low-price, high-volume strategy. The effect of each parameter comes from its impact on the profitability of such a strategy relative to the profitability of the lower-volume, higher-price strategy of isolation. Thus, for example, disruption is more likely the higher is \(u_{n1} \) because a higher utility of the new product in segment 1 means that its price does not need to fall as much for disruption to occur.

The effect of several of the parameters comes from their impact on the additional volume generated by disruption. The bigger the size of segment 1 (\(S_1 \)), the greater the potential to increase volume through disruption and hence the greater the threat of disruption. Similarly, the greater the output of the established-technology firms (\(q_{ei} \)), the less segment-1 demand is available for the new product and hence the lower the volume generated by disruption. From Lemma 2, we have that \(q_{ei}^* \) is decreasing in \(c_{ei} \) and hence the threat of disruption increases with the cost of an established-technology firm. On the other hand, \(q_{ei}^* \) is increasing in \(u_{ei} \), which decreases the threat of disruption. While the output of any individual established-technology firm is falling in \(n_E \), the total output of the established product, \(Q_{ei}^* \), is increasing in \(n_E \) and hence the threat of disruption is decreasing in \(n_E \).

The effects of the remaining parameters come from their impact on the profitability of staying in segment 2. The larger the size of segment 2 (\(S_2 \)), the more attractive it is for new-technology firms to stay there. The higher the utility of the new product in the segment (\(u_{n2} \)), the greater the price premium for staying there. Finally, the more firms that compete in segment 2 (\(n_N \)), the lower the price and the volume for any individual firm and the less attractive it is to stay there. Thus, the threat of disruption is decreasing in \(S_2 \) and \(u_{n2} \) and increasing in \(n_N \).

Because market boundaries depend on the number of firms using each technology, our theory has implications for merger analysis, and we examine these more closely in Section 8.

The effect of new-technology firms’ costs on the threat of disruption is as follows.

Proposition 2.

(i) If \(c_{ni} = c_N + c_i \) for all \(i \), the threat of disruption is decreasing in \(c_N \).

(ii) With multiple new-technology firms and \(S_2 \) large relative to \(S_1 \), increases in own costs \(c_{ni} \), increase firm \(i \)’s incentive to disrupt. Formally, when \(n_N > 1 \), there exist critical values \(s^I, s^D > 0 \) such that \(\partial \Delta_{Ni}^I / \partial c_{Ni} > 0 \) when \(\Delta_{Ni}^I = 0 \) if and only if \(S_1/S_2 < s^I \), and \(\partial \Delta_{Ni}^D / \partial c_{Ni} < 0 \) when \(\Delta_{Ni}^D = 0 \) if and only if \(S_1/S_2 < s^D \). We have \(\partial s^I / \partial n_N > 0 \).

(iii) Increases in new-technology firm \(j \)’s costs decrease the incentive of firm \(i \) to disrupt. Formally, \(\partial \Delta_{Ni}^I / \partial c_{Nj} > 0 \) when \(\Delta_{Ni}^D = 0 \) and \(\partial \Delta_{Ni}^D / \partial c_{Nj} < 0 \) when \(\Delta_{Ni}^I = 0 \).

(iv) It is not necessarily the low-cost firm that has the greatest incentive to deviate from the isolated equilibrium.

Proof. See the web Appendix.

According to part (i), uniform increases in the cost of new-technology firms reduce the threat of disruption. This is because cost increases reduce margins and make the low-price, high-volume disruptive strategy less attractive.\(^{14}\) Despite this result, we find in part (iv) that it is not necessarily the lowest-cost firm that has the greatest incentive to deviate from the isolated equilibrium. On

\(^{14}\) Our findings that the likelihood of disruption increases with the new-technology’s cost advantage (\(\bar{c}_N - c_E \)) and with the relative segment sizes (\(S_1/S_2 \)) are consistent with Christensen’s claims (1997). Our finding is in contrast to the assumption in Klepper (1996) that cost reductions do not serve to attract new customers to a firm.

© RAND 2005.
the one hand, the lowest-cost firm has the highest margins among new-technology firms, which favors output expansion and hence disruption. On the other hand, the lowest-cost firm has the highest market share in the secondary segment and hence the most to lose from the fall in price that comes with disruption. In part (ii) we see that the effect that dominates depends on segment size: the larger is segment 2, the less likely it is that the lowest-cost firm initiates disruption; this effect is greater, the larger the number of new-technology firms. Part (iii) shows that among the new-technology firms, an increase in a rival’s cost decreases a firm’s incentive to disrupt. This is because the firm’s segment 2 market share is increasing in the costs of its rivals.

An important caveat to the results in this section is that we assume that all of the parameters are exogenous. In some settings, however, some parameters may affect the value of other parameters. For example, increasing the size of segment 2 might lower the costs of new-technology firms (e.g., through experience effects) or increase the number of new-technology firms (e.g., if the number of firms depends on the ability to cover fixed costs). Our results on the threat of disruption could be reversed if such indirect effects outweigh the direct effects. This offers an avenue for future work, especially the possibility of endogenizing the number of firms using each technology.

5. Existence and uniqueness

We now turn to the existence and uniqueness of pure-strategy Nash equilibria in our model. From Proposition 1, we know that critical values of u^D_{N2} and u^I_{N2} exist such that the disruptive equilibrium exists for $u_{N2} \leq u^D_{N2}$ and the isolated equilibrium exists for $u_{N2} \geq u^I_{N2}$. The questions of existence and uniqueness can be reduced to asking what is the ordering of u^D_{N2} and u^I_{N2}. For example, if $u^D_{N2} = u^I_{N2}$, then there is a unique PSNE for all values other than $u_{N2} = u^D_{N2}$. To characterize this ordering, we consider how these critical values depend on the parameter u_{N1}.

We first define the critical values of u_{N2} such that firm i is indifferent about deviating from equilibrium ϕ:

$$u^\phi_{N2}(x) = \{ y : \Delta^\phi_{Ni} = 0 \text{ for } u_{N1} = x \text{ and } u_{N2} = y \}.$$

Aggregating over all firms, we then have

$$u^I_{N2}(x) = \max_i u^I_{N2i}(x).$$
These functions are linear and are illustrated in Figure 3.\footnote{The parameter values used to generate Figure 3 are $S_1 = 4S_2$, $n_E = n_N = 2$, $u_{E1} = 4$, and $c_{E1} = c_{E2} = c_{N1} = c_{N2} = 1$.} Note that the disruptive equilibrium exists to the right of the $u_{N2}^D(u_{N1})$ line and the isolated equilibrium exists to the left of the $u_{N2}^I(u_{N1})$ line. Where $u_{N2}^I(u_{N1}) > u_{N2}^D(u_{N1})$ there is a region with no PSNE and where $u_{N2}^I(u_{N1}) < u_{N2}^D(u_{N1})$, there is a region with multiple PSNE. Outside of these two regions, there is a unique PSNE.\footnote{The points to the right of the dashed lines in Figure 3 fall outside of the boundaries specified in Lemma 1. The points with low u_{N2} are where the new technology bypasses segment 2 and is bought by consumers only in segment 1. The points with high u_{N1} are where output of the established-technology firms is driven to zero.}

The ordering depicted in the figure is general in that:

Lemma 5. The linear functions $u_{N2}^D(u_{N1})$ and $u_{N2}^I(u_{N1})$ cross once, with $u_{N2}^D(u_{N1})$ cutting $u_{N2}^I(u_{N1})$ from below. The difference between the slope of $u_{N2}^D(u_{N1})$ and $u_{N2}^I(u_{N1})$ is increasing in n_E and n_N.

Proof. See the web Appendix.

While there may be a unique PSNE, it is also possible to have either no PSNE or multiple equilibria. That the model exhibits both multiplicity and nonexistence is due to the possibility that outputs can be either strategic complements or strategic substitutes (see Section 3). Nonexistence of pure-strategy equilibria can occur when the output of the new-technology firms is a strategic complement for the established firms. Then, when established-technology firms expect isolation, they have a low output, and this can trigger disruption; when they expect disruption, they have a high output, and this can make disruption unattractive. When both occur, neither an expectation of disruption nor one of isolation can form the basis of a Nash equilibrium, and a PSNE does not exist.

There are two sources of multiplicity in the model. When the output of the new-technology firms is a strategic substitute for the established firms, then an expectation of disruption leads to a low output by the established-technology firms, and this can trigger disruption that would not occur if the established-technology firms did not expect it. Second, when $n_N > 1$, the upward jump in the best-response functions among new-technology firms (see Figure 2) can give rise to multiple PSNE: the expectation that other new-technology firms are playing a high-volume, disruptive strategy can cause a self-fulfilling escalation of production plans.

In Appendix B, we exhibit a mixed-strategy equilibrium (for the case of $n_N = 1$) that exists when there is no PSNE. Numerical analysis indicates that the comparative statics on the threat of disruption in Proposition 1 hold for the probability of disruption in the mixed-strategy equilibrium.

6. The effect of improving technologies

Does the threat posed by a new technology increase with technological advance? Recall that utility levels in the model increase over time as the technologies mature, $u_{lm}'(t) \geq 0$. Formally, we are interested in whether the threat of disruption is increasing in t.

We know from Proposition 1 that the threat of disruption is increasing in u_{N1} and decreasing in u_{N2} and u_{E1}, and hence results will depend critically on the relative rates at which the different utilities are increasing over time. Thus, the extent to which the established technology has exhausted its ability to increase consumer utility relative to the new technology (“performance oversupply”) does affect the threat posed by a new technology, but it is not the only driver. Figure 4 illustrates how the new technology’s utility trajectory—the relative rate at which u_{N1} and u_{N2} increase over time— influences whether or not there is disruption. As u_{N1} and u_{N2} increase along their trajectory, the solid lines in Figure 4, the set of PSNE change when the trajectory intersects
with the critical thresholds $u_{N2}^D(u_{N1})$ and $u_{N2}^D(u_{N1})$. Note that unless $u_E'(t) = 0$, the critical thresholds $u_{N2}^D(u_{N1})$ and $u_{N2}^D(u_{N1})$ increase over time. We start with the limiting case of performance oversupply where the utility from the established technology is no longer increasing. Under what conditions does the disruptive threat increase over time? Does it increase even if $u_{N2}^D(t) > u_{N1}(t)$ so that the new technology’s utility trajectory favors segment 2?

Proposition 3. Suppose $u_E'(t) = 0$. There exists an $r \in (0, 1/(n_N + 1))$ such that the threat of disruption is increasing in t if and only if $u_{N1}(t) > ru_{N2}(t)$. The parameter r is decreasing in n_N and S_1/S_2.

We find that unless u_{N2} is improving much faster than u_{N1}, the threat posed by the new technology does increase over time. For intuition as to why r, the critical ratio of improvement rates, is less than $1/(n_N + 1)$, consider the breakdown of the isolated equilibrium. In this equilibrium, the surplus available to segment-1 consumers from buying the new product is $u_{N1}(t) - P_N(Q_{N1}, Q_{N2})$, where $P_N(Q_{N1}, Q_{N2}) = (u_{N2}(t) + n_N\bar{c}_N)/(n_N + 1)$ is the equilibrium price of the new product. This surplus is increasing over time as long as $u_{N1}(t) > (1/[n_N + 1])u_{N2}(t)$. Since the surplus from the established product is constant over time when $u_E'(t) = 0$, the relative attractiveness of the new product to segment 1 is increasing over time. In general, we find that r is decreasing in n_N because more competition leads to more of the surplus going to consumers. The larger is S_1 relative to S_2, the more willing are new-technology firms to give surplus to consumers in order to enter segment 1 and hence the lower is r.

Consider how Proposition 3 applies to the functional form, $u_{N1}(t) = b_{N1}t^\beta$ and $u_{N2}(t) = b_{N2}t^\beta$. The parameters b_{N1} and b_{N2} reflect both the rate of improvement in product performance and customers’ willingness to pay for those improvements. (The parameter $\beta \in (0, 1]$ reflects both decreases in the rate of technological progress and the extent to which consumers exhibit decreasing marginal utility for product improvements.) The trajectory is then $u_{N2}(t)/u_{N1}(t) = b_{N2}/b_{N1}$, and disruption occurs for t sufficiently large if $b_{N1} > [1/(n_N + 1)b_{N2}]$.

Now consider the possibility that the established technology is also improving, $u_E'(t) > 0$. In Figure 4, this corresponds to a rightward shift over time in the $u_{N2}^D(u_{N1})$ functions. We focus on the case where all utilities are increasing at the same rate.

Proposition 4. Suppose $u_E'(t) = u_{N1}'(t) = u_{N2}'(t)$.
We are interested in the effect of disruption on outputs, prices, social welfare, market shares, profitability, and innovation incentives. Our approach is to compare these outcomes when the disruptive and the isolated equilibria both exist, which corresponds to a transition from isolation to disruption occurring as the new technology’s trajectory moves through the multiple-equilibrium region (see Figure 4).

Proposition 6. Suppose both the isolated and the disruptive equilibrium exist. A shift from the isolated to the disruptive equilibrium lowers the price of both products and increases the output of the new-technology firms. Social welfare is higher in the disruptive equilibrium, and all consumers are weakly better off.

Proof. See Appendix A.

Disruption is fundamentally an increase in rivalry as each firm faces more competitors. This leads to a fall in product prices toward marginal costs, which raises social welfare and leaves

\[u_{E1}(t) = bt^\beta \]

\[u_{N2}(t) = b(t + h)^\delta \]

where the parameter \(h \) reflects a head start for the established technology. Then, for \(h \) large and \(t \) small, \(u_{E1}'(t) = \beta b^\beta / (t + h)^{1-\beta} \) will be much smaller than \(u_{N2}'(t) = \delta b^\delta / h^{1-\delta} \) so that the threat of disruption initially increases over time, following the logic of Proposition 3. For sufficiently large \(t \), however, the effect of \(h \) fades and then, for \(n_{E}/n_{N} \) sufficiently large, the threat of disruption recedes, following the logic of Proposition 4.

7. The effects of disruption

We are interested in the effect of disruption on outputs, prices, social welfare, market shares, profitability, and innovation incentives. Our approach is to compare these outcomes when the disruptive and the isolated equilibria both exist, which corresponds to a transition from isolation to disruption occurring as the new technology’s trajectory moves through the multiple-equilibrium region (see Figure 4).

Proposition 6. Suppose both the isolated and the disruptive equilibrium exist. A shift from the isolated to the disruptive equilibrium lowers the price of both products and increases the output of the new-technology firms. Social welfare is higher in the disruptive equilibrium, and all consumers are weakly better off.

Proof. See Appendix A.

Disruption is fundamentally an increase in rivalry as each firm faces more competitors. This leads to a fall in product prices toward marginal costs, which raises social welfare and leaves
all consumers who purchase strictly better off. Because of their nonmonotonic best-response function, the output of the established firms can either increase or decrease with disruption. Does disruption increase the profits of new-technology firms at the expense of established-technology firms? Not necessarily:

Proposition 7. Suppose both the disruptive and the isolated equilibrium exist.

(i) If \(n_N = 1 \), \(\pi_{N1}^D \geq \pi_{N1}^I \).

(ii) If \(n_N > 1 \), then for \(S_2 u_N2 \) sufficiently small and \(u_N2 \) sufficiently large, \(\pi_{N1}^D < \pi_{N1}^I \).

(iii) If \(c_{Ei} = \bar{c}_{Ei} \), \(\pi_{Ei}^D < \pi_{Ei}^I \).

Proof. See Appendix A.

When there is only one new-technology firm, it can always guarantee itself at least its profits in the isolated equilibrium. Hence, its profits in the disruptive equilibrium must be at least as great. This is not the case when there is more than one new-technology firm, because they may face a coordination problem (due to the upward jump in their best-response functions). When \(u_N2 \) is sufficiently large, new-technology firms will have high profits in the isolated equilibrium. But when \(S_2 \) is sufficiently small, the output of the new-technology firms is so great under an expectation of disruption that no single firm can (profitably) restore the isolated outcome by unilaterally reducing its output, and hence the disruptive equilibrium will exist as well. Thus, a shift from isolation to disruption can lower the profits of new-technology firms when they start in a small but high-margin segment.

The increase in competition that comes with a shift from isolation to disruption reduces the profits of the established-technology firms, at least if they have average costs. The reason for the restriction to firms with average costs is that disruption can either amplify or dampen the effects of cost asymmetries on market shares and relative profitability, as shown in Section 7.

To facilitate the statement of subsequent results, it is convenient to define the following:

\[
R_N = n_E [(u_{N1} - \bar{c}_N) - (u_{E1} - \bar{c}_E)] + \frac{S_1}{S_1 + S_2} (u_{N1} - u_{N2}),
\]

\[
R_E = n_N [(u_{E1} - \bar{c}_E) - (u_{N1} - \bar{c}_N)] - \frac{S_2}{S_1 + S_2} (u_{N1} - u_{N2}).
\]

\(R \) depends on a technology’s relative value creation in segment 1 with an adjustment for the extent to which the new technology is committed to segment 1. Note that there is no a priori restriction on the sign of \(R_N \) or \(R_E \), but there is a tendency for them to have the opposite sign (e.g., for \(n_N = n_E \) and \(S_1 = S_2 \) we have \(R_N = -R_E \)).

The effect of disruption on market share. We now characterize the effect of a shift from isolation to disruption on firm market shares. We focus on a firm’s share of a particular product...
market, that is, on \(q_{Ni} / Q_N \) or \(q_{Ei} / Q_E \). Consider the market share of the \(i \)th new-technology firm in the isolated equilibrium,

\[
\frac{q_{Ni}^I}{Q_N^I} = \frac{1}{n_N} \frac{u_{N2} - c_{Ni} + n_N(\bar{c}_N - c_{Ni})}{u_{N2} - \bar{c}_N}.
\]

First notice that a firm’s market share is increasing in \(n_N(\bar{c}_N - c_{Ni}) \): firms with low costs have higher market share, and this effect is increasing in the number of rivals. Moreover, what matters are cost asymmetries relative to average value creation, \(u_{N2} - \bar{c}_N \). That is, the market share of low-cost new-technology firms is falling as average value creation across new-technology firms increases because their cost advantage looms less large. Conversely, the market share of firms with above-average costs is strongly decreasing in the number of rivals \(n_N \) and increasing in \(u_{N2} - \bar{c}_N \).

A shift from isolation to disruption has two effects. First, the number of competitors increases to \(n_N + n_E \), and this will tend to increase the market share of low-cost firms at the expense of their high-cost rivals. Second, the effective value creation of new-technology firms is now \(R_N \). As long as \(R_N \) is not too large relative to \(u_{N2} - \bar{c}_N \), the effect of cost asymmetries on market share are amplified by disruption:

Proposition 8.

(i) The shift in market share \(q_{Ni}^D / Q_N^D - q_{Ni}^I / Q_N^I \) has the same sign as \(\bar{c}_N - c_{Ni} \) if and only if \(R_N < [n_E/(n_N + 1)](u_{N2} - \bar{c}_N) \).

(ii) The shift in market share \(q_{Ei}^D / Q_E^D - q_{Ei}^I / Q_E^I \) has the same sign as \(\bar{c}_E - c_{Ei} \) if and only if \(R_E < [n_N/(n_E + 1)](u_{E1} - \bar{c}_E) \).

Proof. See Appendix A.

In part (ii) we see that there is an analogous result for established-technology firms. Thus, barring a large shift in effective value creation, we find that disruption increases standard measures of concentration such as the Herfindal index, \(\sum_{i=1}^{n_N}(q_i / Q_N)^2 \), or the \(n \)-firm concentration ratio.

The effect of disruption on innovation incentives. A first step toward endogenizing technology improvement in the model is to consider innovation incentives and how these change with disruption. A reduction in a firm’s marginal cost is equivalent in our model to a corresponding increase in all of its utility levels. A firm’s incentives to lower costs in Cournot models are increasing in the number of competitors and in the firm’s output. In particular, we have

\[
\frac{\partial \pi_{Ni}^I}{\partial c_{Ni}} = -2\frac{n_N}{n_N + 1} q_{Ni}^I,
\]

\[
\frac{\partial \pi_{Ni}^D}{\partial c_{Ni}} = -2\frac{n_N + n_E}{n_E + n_N + 1} q_{Ni}^D.
\]

The shift from isolation to disruption has two effects. First, the increase in the number of competitors increases the incentive to innovate (i.e., \(n_N/(n_N + 1) < (n_N + n_E)/(n_E + n_N + 1) \)). Second, an increase in output increases the incentive to innovate, and while not all new-technology firms necessarily experience an increase in output, we do know from Proposition 6 that average output increases. Thus, we have shown the following:

Proposition 9. Averaging across new-technology firms, the incentive to lower costs is greater under disruption than under isolation.

This suggests that the threat posed by a new technology increases after disruption because innovation incentives increase. While established-technology firms also experience an increase in number of competitors, their output might fall sufficiently to offset that effect. Hence the analogous
result does not hold for established-technology firms. Moreover, one might expect that innovation incentives are more important for the new rather than the established technology because there is more scope for improvement.

While some innovative activity, such as cost reductions, have an equal impact on value creation in both segments, other innovative activity will disproportionately benefit one segment. For example, efforts to reduce the power consumption of a disk drive benefit mostly the portable segment. Such considerations are important for the new technology after disruption because it is selling to both segments. Two comparisons are of interest. The first is the incentive to improve segment-1 utility, \(\partial \pi^D_{N_1} / \partial u_{N_1} \), relative to the incentive to improve segment-2 utility, \(\partial \pi^D_{N_2} / \partial u_{N_2} \). Relative incentives are particularly important when the firm must choose between different R&D projects because of limited resources. The second comparison of interest is the incentive to improve utility for segment-2 before disruption, \(\partial \pi^I_{N_2} / \partial u_{N_2} \), and after disruption, \(\partial \pi^D_{N_2} / \partial u_{N_2} \). We can address these issues for a monopolist new-technology firm.\(^{20}\)

Proposition 10. Suppose \(n_N = 1 \).

(i) \(\partial \pi^D_{N_1} / \partial u_{N_1} > \partial \pi^D_{N_2} / \partial u_{N_2} > 0 \).

(ii) There exists some \(k > 0 \) such that \(\partial \pi^I_{N_2} / \partial u_{N_2} > \partial \pi^D_{N_2} / \partial u_{N_2} \) if and only if \(R_N \leq k \).

Proof. See Appendix A.

Under disruption, a monopolist new-technology firm always has a greater incentive to target innovation at segment 1 than at segment 2. This is true even if segment 2 is larger than segment 1. The reason for the strong bias toward segment-1 consumers is that increases in \((u_{N_1} - u_{N_2}) \) serve to commit the firm to segment 1, which leads to greater accommodation by the established-technology firms. Despite this commitment effect, it is still the case that \(\partial \pi^D_{N_1} / \partial u_{N_2} > 0 \). The absolute incentive to pursue improvements targeted at segment 2 falls with disruption, as long as \(R_N \) is not too large, because the commitment effect lowers \(\partial \pi^D_{N_1} / \partial u_{N_2} \) relative to \(\partial \pi^I_{N_2} / \partial u_{N_2} \). Proposition 10 suggests a caveat to our earlier welfare result. Although the price declines that accompany disruption make all consumers better off initially, consumers in segment 2 might possibly be worse off in the long run because the focus of innovative activities shifts toward segment 1.

8. Merger analysis

Although Section 6 focuses on disruption triggered by improving technologies, disruption can result from shifts in any of the parameters. Shifts in the number of firms, \(n_E \) and \(n_N \), are of particular interest, as they are often associated with mergers and acquisitions and hence are subject to regulatory approval. There is a prior literature on mergers in Cournot models (Salant, Switzer, and Reynolds, 1983; Perry and Porter, 1985; Farrell and Shapiro, 1990) that considers what happens to prices, profits, and welfare when Cournot competitors merge. One of the central issues in the literature is whether mergers are profitable for the merging firms. While mergers raise total industry profits, it is quite possible that the profit of the merged entity is less than the sum of the profits of the merging firms prior to the merger. For example, Salant, Switzer, and Reynolds (1983) show that a merger is profitable only if it involves at least 80% of the firms in an industry for the case of linear demand and constant marginal costs. Subsequent articles focus on how efficiency gains (“synergies”) can increase the scope for profitable mergers. Absent such efficiency gains, mergers of Cournot competitors cause price to rise and welfare to fall.

These prior results on profits, prices, and welfare need not hold in our model because we allow mergers to alter the boundaries of competition, a possibility not considered in the received literature. Because decreases in \(n_E \) increase the threat of disruption (Proposition 1), a merger

\(^{20}\) We restrict attention to \(n_N = 1 \) because for \(n_N > 1 \) our prior analysis can only accommodate a new-technology firm increasing its utilities if the improvement is the same across segments (and hence is equivalent to a reduction in costs).
among established firms can lead to the emergence of technology competition. Conversely, because the threat of disruption is increasing in \(n_N \), a merger among new-technology firms can eliminate technology competition:

Proposition 11.

(i) For any \(n_N \geq 2 \), there exist parameter values such that a merger by two of the new-technology firms causes the unique PSNE to shift from disruption to isolation.

(ii) For any \(n_E \geq 2 \), there exist parameter values such that a merger by two of the established-technology firms causes the unique PSNE to shift from isolation to disruption.

Proof. See Appendix A.

To see that changes in the boundaries of competition can reverse results from the prior literature on the effects of mergers, consider the following example. There are originally three firms of each type, \(n_E = n_N = 3 \), all of which have the same constant marginal costs, \(c_E = c_N = 1 \). Both technologies give the same utility to consumers in segment 1, \(u_{N1} = u_{E1} = 5 \), while the new technology gives somewhat higher utility to consumers in segment 2, \(u_{N2} = 6 \). Segment 1 is twice the size of segment 2, \(S_1 = 2S_2 = 2 \). We denote the consumer surplus in segment \(m \) by \(C_m \).

First, consider the effect of a merger between two of the new-technology firms. The first two columns of Table 1 report the unique PSNE, prices, profits, consumer surplus, and social welfare before and after the merger; values are rounded to one decimal place.

As in part (i) of Proposition 11, the merger of the new-technology firms shifts play from the disruptive to the isolated equilibrium. As a result, the decrease in rivalry from the merger far exceeds that which occurs in a standard Cournot model, and the postmerger profits of 2.8 for the combined entity are greater than the premerger profits of 2.4 for the two merging firms—the merger is profitable despite the absence of synergies and the involvement of only a small number of firms.

We can contrast the effect of a merger in our model to that in a standard Cournot model that is calibrated to yield equivalent outcomes prior to the merger. Given that \(c_N = c_E \) and \(u_{N1} = u_{E1} \) in the example, the profits and prices under the disruptive equilibrium in our model are exactly the same as the profits and prices in an \(n \)-firm Cournot model with \(n = n_E + n_N \), demand given by

\[
P(Q) = \frac{S_1 u_{N1} + S_2 u_{N2}}{S_1 + S_2} - \frac{Q}{S_1 + S_2},
\]

and constant marginal costs of 1 for all firms.\(^{21}\) In this standard Cournot model, a reduction in \(n \) from 6 to 5 only raises prices from 1.6 to 1.7, while firm profits increase from 1.2 to 1.6, with both effects being considerably below what occurs in our model. In the standard Cournot model, the merger reduces social welfare by less than 1% (from 27.6 to 27.4), whereas in our model it falls over 6% (from 27.9 to 26.1). Now consider a subsequent merger by two of the established-technology firms, a shift from column 2 to column 3 of Table 1. As in part (ii) of Proposition 11, the merger of the established-technology firms shifts play from the isolated to the disruptive equilibrium. Despite the decrease in the number of firms, there is a net increase in rivalry. As a result, prices fall and social welfare increases. Not only do the profits of the merging firms fall (from 4 to 2.3), but total industry profits fall as well (from 11.6 to 9.2). Finally, note the asymmetry across segments in the effect of mergers on consumer surplus.\(^{22}\)

\(^{21}\) The only difference is that consumer surplus is slightly higher in our model, since for low output, consumer willingness to pay is higher than \(P(Q) \).

\(^{22}\) The small net effect of the two mergers on social welfare (from 27.9 to 27.4) is approximately the same as the net effect of going from \(n = 6 \) to \(n = 4 \) in the standard Cournot model with \(P(Q) = \frac{S_1 u_{N1} + S_2 u_{N2}}{2S_1 + 2S_2} - \frac{Q}{2S_1 + 2S_2} \) and constant marginal costs of 1.

© RAND 2005.
TABLE 1 The Effect of Two Sequential Mergers

<table>
<thead>
<tr>
<th>Unique PSNE</th>
<th>Disruption</th>
<th>Isolation</th>
<th>Disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>nE = nN = 3</td>
<td>1.6</td>
<td>2.7</td>
<td>1.9</td>
</tr>
<tr>
<td>nE = 3, nN = 2</td>
<td>1.6</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>nE = nN = 2</td>
<td>1.2</td>
<td>2.8</td>
<td>2.3</td>
</tr>
<tr>
<td>nE = 3, nN = 2</td>
<td>1.2</td>
<td>2.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>

9. Extensions

Multitechnology firms. In addition to describing the phenomena of disruptive technologies, Christensen (1997) seeks to explain the “innovator’s dilemma,” an observation that established firms often do not exploit a disruptive technology despite having the capability to do so. Indeed, in many of Christensen’s examples, the new technology is developed by an established firm, which then chooses not to commercialize it. Christensen’s explanation of the innovator’s dilemma, which he bases on the sociology of resource dependence (Pfeffer and Salancik, 1978), is that a firm’s technology decisions are inordinately influenced by the needs of its existing customers in the primary segment, who are not interested, at least initially, in the new technology.

To explore the incentives for established firms to use a disruptive technology, we extend our model to allow some firms to use both technologies. In particular, suppose that \(n_M < \min(n_E, n_N) \) firms have the capability to use both technologies, and let these be the first \(n_M \) firms of each type. We have that firm \(i \leq n_M \) produces \(q_{Ni} \geq 0 \) units using the new technology at marginal costs \(c_{Ni} \) and \(q_{Ei} \geq 0 \) units using the established technology at marginal cost \(c_{Ei} \). Thus, the maximization problem of a multi-technology firm is

\[
\max_{q_{Ei}, q_{Ni}} q_{Ei}(P_E(Q_E, Q_N) - c_{Ei}) + q_{Ni}(P_N(Q_N, Q_E) - c_{Ni}).
\]

The first-order conditions in a disruptive equilibrium for multi-technology firm \(i \) are

\[
P_E - c_{Ei} - \frac{q_{Ei} + q_{Ni}}{S_1 + S_2} = 0,
\]

\[
P_N - c_{Ni} - \frac{q_{Ei} + q_{Ni}}{S_1 + S_2} = 0.
\]

That is, optimal output trades off the margin, \(P_\lambda - c_{ij} \), earned from an additional sale with the decline in price, \(P'_E = P'_N = -1/(S_1 + S_2) \), times total output, \(q_{Ei} + q_{Ni} \). Since the decline in price is the same across products in our model, there is a corner solution where the firm produces using only the technology that has the higher margin. In a disruptive equilibrium, consumers in segment 1 must be indifferent between the two products, and hence we have \(P_E - P_N = u_{E1} - u_{N1} \) so that the difference in margins is \((P_E - c_{Ei}) - (P_N - c_{Ni}) = (u_{E1} - c_{Ei}) - (u_{N1} - c_{Ni}) \). We have shown the following:

Proposition 12. In a disruptive equilibrium, multi-technology firm \(i \) uses only the production technology for which it has higher value creation in segment 1, \(u_{\lambda 1} - c_{ij} \).

Proof. See Appendix A.

© RAND 2005.
Our model elucidates the innovator’s dilemma. In cases where the established technology is better suited to segment 1, not using the new technology is profit maximizing after disruption. Echoing Christensen, we show that focusing on the technology that best suits the primary segment can be consistent with short-run profit maximization. Although an established firm will want to switch to the new technology if it progresses to a point where it has superior value creation, (unmodelled) early-mover advantages for the new-technology firms may keep it from doing so successfully.

□ Price discrimination. Our base model assumes no price discrimination based on segment. This is consistent with most of the leading examples of disruptive technologies (e.g., disk drives, printers, earthmoving equipment, and retail formats). Price discrimination, however, is important in some contexts. For example, if the segments are geographically distinct markets and there are transportation costs, then price discrimination is possible.

Formally, we assume that with price discrimination across segments, new-technology firms can choose separate quantities $q_{Ni,1}$ and $q_{Ni,2}$ to sell into market segments 1 and 2, respectively. The model is considerably simplified by this assumption because each segment can be analyzed separately. We limit ourselves to generalizing the results on the drivers of disruption from Section 4.

Proposition 13.

(i) Suppose new-technology firms can price discriminate across segments. There is a unique Nash equilibrium. The threat of disruption is increasing in u_{N1} and c_{Ei}, decreasing in n_{E}, u_{E1}, and min c_{Ni}, and independent of S_{1}, S_{2}, n_{N}, and u_{N2}.

(ii) If the technologies are isolated with price discrimination, they are necessarily isolated without price discrimination.

Proof. See Appendix A.

In part (i) we see that the effects of u_{N1}, u_{E1}, n_{E}, and c_{Ei} on disruption are the same with or without price discrimination. With price discrimination the firms do not need to trade off profits in each segment and hence we find that u_{N2}, S_{1}, S_{2}, and n_{N} no longer affect disruption, and moreover it is unambiguously the low-cost firm that has the greatest incentive to disrupt. Without the need to reduce margins in segment 2 to enter segment 1, we find in part (ii) that the threat of disruption is greater when firms can price discriminate. Thus, we find that the ability to price discriminate across market segments is a potentially important determinant of the boundaries of technology competition.

□ An alternative-demand specification. In an earlier version of the article (Adner and Zemsky, 2001), we work with an alternative-demand specification that builds on Shaked and Sutton (1982). Specifically, we assume that consumers in segment m have a taste for quality θ that is uniformly distributed over [0, 1] with density $S_{m} > 0$ and that the willingness to pay of a consumer in segment m is θu_{2m} (rather than the additive specification $u_{2m} + d$ we use here). The prior specification is less tractable. In the earlier version, we analyze only the isolated equilibrium and we assume homogeneous costs (i.e., $c_{Ni} = c_{N}$ and $c_{Ei} = c_{E}$). However, we do study both the Cournot equilibrium with an arbitrary number of firms and a Bertrand duopoly (i.e., $n_{N} = n_{E} = 1$).23 The results in Proposition 1 on the set of parameters that support the isolated equilibrium all hold in the alternative demand specification. We show that the set of parameters that support the isolated equilibrium is smaller under Bertrand than Cournot competition.24

23 For the Cournot analysis we restrict attention to $u_{E1} > u_{N1}$ because the inverse-demand function changes when this condition reverses.

24 We expect that the results from Proposition 1 on the disruptive equilibrium would hold in the alternative specification as well. One result that might well be sensitive to our modelling of demand is the stark result on multi-technology firms: in the alternative demand specification, there is not one best technology for all consumers in segment 1.

© RAND 2005.
10. Conclusion

Despite its importance for technology evolution and antitrust deliberations, market definition is usually taken as a purely empirical question. The standard approach in theoretical work in industrial organization is to take as given the set of competing firms and the set of relevant consumers. In contrast, we take the boundaries of competition as a central research question. Inspired by recent empirical observations of disruptive technologies, we use a model of horizontal and vertical differentiation to explore how market boundaries are shaped not just by consumer preferences, but also by the profit-maximizing behavior of firms.

Our results hold a variety of implications for firm strategy. For established-technology firms, we show that even if the new technology’s trajectory is significantly better suited to its niche, the technology may still prove to be disruptive, and we identify a variety of factors (costs, segment sizes, etc.) that must be weighed in assessing the likelihood of disruption. For new-technology firms, we show that it is not necessarily the market leader in the niche that has the greatest incentive to pursue a disruptive strategy. Further, we show that disruption should not be blindly embraced by new-technology firms, because it can lead to a fall in their profits. Given the possibility of multiple equilibria, both types of firms may benefit from actions to shape industry expectations in order to coordinate play on their preferred outcome. While it is possible that all firms prefer the isolated equilibrium because there is less competition, it is also possible that new-technology firms benefit from an expectation of disruption because established-technology firms sometimes reduce their output in anticipation. Finally, we show that mergers among established-technology firms can actually increase industry rivalry if they alter the existing boundaries of competition.

There are many directions in which the analysis could be extended. One could endogenize the number of firms using each technology and then study the effect of disruption on entry and exit of each type of firm. The current model is only weakly dynamic and there is ample room to develop more dynamic models of technology competition in which there are intertemporal linkages in firm profit functions. For example, one could allow firms to choose their technology trajectory as in the simulations in Adner (2002). In addition, one could study a variety of strategies that established firms could pursue in an effort to deter disruption, such as making strategic commitments and investing in complementary assets (Teece, 1986). In Adner and Zemsky (forthcoming) we use a related, but simpler, model to study the sustainability of a firm’s competitive advantage.

Appendix A

Proofs of Propositions 3–8, 10–11, 13, and Lemmas 2–3 follow. All other proofs may be found in the web Appendix at www.rje.org/main/sup-mat.html.

Proof of Lemma 2. It is useful to start by recalling the n-firm Cournot equilibrium with linear demand and homogeneous products. Suppose \(P(Q) = u - Q/S \) and there are \(n \) firms indexed by \(i \) with marginal costs \(c_i \). Each firm maximizes profits \(\pi_i = q_i(u - c_i - \sum_{j=1}^{n} q_j/S) \) or, equivalently,

\[
\pi_i = q_i(u - c_i - \sum_{j=1}^{n} q_j/S) \quad \text{where } v_i = u - c_i. \tag{A1}
\]

Let \(\bar{v} = \sum_{i=1}^{n} v_i/n \). Assuming \(|v_i - \bar{v}| \) sufficiently small, there is a unique Nash equilibrium with output and profits given by

\[
q_i^* = \frac{S}{n+1} (v_i + n(v_i - \bar{v})),
\]

\[
\pi_i^* = (q_i^*)^2/S.
\]

Any PSNE in our model has the same form as \(q_i^* \) and \(\pi_i^* \), once the appropriate values for \(S, n, \) and \(v_i \) are substituted. Consider first the output and profits of the new-technology firms in a PSNE under a presumption of isolation. Given isolation, we have from Lemma 1 that \(P_{N}(Q_N, Q_E) = u_{N2} - Q_N/S \) \(P_{E}(Q_N, Q_E) = u_{N2} - \sum_{i=1}^{nN} q_i/S \). Firm i’s profit function is then

\[
\pi_{Ni} = q_i(u_{N2} - c_i - \sum_{j=1}^{nN} q_{Nj}/S). \]

Hence, this is equivalent to the objective in (A1) when \(S = S_2, n = n_N \).
Increasing in and the profit function of the

\[
\pi_{NI} = q_{NI} \left(\frac{S_1 u_{N1} + S_2 u_{N2}}{S_1 + S_2} - c_{N1} \right) - \frac{Q_N + Q_E}{S_1 + S_2},
\]

and the profit function of the ith established-technology firm is

\[
\pi_{EI} = q_{EI} \left(\frac{S_2}{S_1 + S_2} (u_{N1} - u_{N2}) - c_{Ej} \right) - \frac{Q_E + Q_N}{S_1 + S_2}.
\]

Hence, this is equivalent to objective (A1) for \(S = S_1 + S_2, n = n_N + n_E, \) and the first \(n_N \) firms having

\[
v_i = \frac{S_1 u_{N1} + S_2 u_{N2}}{S_1 + S_2} - c_{N1}
\]

and the next \(n_E \) firms having

\[
v_i = u_{E1} - \frac{S_2}{S_1 + S_2} (u_{N1} - u_{N2}) - c_{E1}.
\]

Noting that for new-technology firms we have \(n(v_i - \bar{v}) = n_N (u_{N} - c_{N1}) + n_E (\bar{v}_{E} - c_{N1}) + n_E (u_{N1} - u_{E1}) \) and for established-technology firms we have \(n(v_i - \bar{v}) = n_E (\bar{v}_{E} - c_{E1}) + n_N (\bar{v}_{N} - c_{E1}) + n_E (u_{E1} - u_{E1}) \), we get the stated expressions for \(q_{NI}^D \) and \(q_{EI}^D \). Q.E.D.

Proof of Lemma 3. Suppose the consumers in segment 2 do not buy the new product. From Lemma 1, it must be that \(Q_N / S_1 \leq u_{N1} - u_{N2} - Q_E / S_1 \) and that \(P_0 = u_{D1} - (Q_N + Q_E) / S_1 \) for \(\phi = N, E \). We can find a lower bound on \(Q_N \) by assuming that \(Q_E = 0 \), in which case the equilibrium total output of new-technology firms is

\[
Q_N^* = S_1 \frac{n_N}{n_N + 1} (u_{N1} - \bar{v}_{N}).
\]

Consumers in segment 2 want to buy the new product if \(Q_N^* / S_1 > u_{N1} - u_{N2} \), which is equivalent to (1). If this condition and \(\min q_{NI}^D \geq 0 \) are satisfied, then \(\{q_{NI}^D, q_{NI}^I\} \) are the only two sets of pure strategies that can be locally optimal. Q.E.D.

Proof of Proposition 3. Suppose \(u_{E}^C(t) = 0 \). (i) We are interested in conditions under which the disruptive equilibrium is increasing in \(t \), that is, under which \(\partial \Delta_{NI}^D / \partial t < 0 \) for all \(i \). We have that

\[
\frac{\partial \Delta_{NI}^D}{\partial t} = \frac{\partial \Delta_{NI}^D}{\partial u_{N1}} u_{N1}'(t) + \frac{\partial \Delta_{NI}^D}{\partial u_{N2}} u_{N2}'(t).
\]

From Proposition 1, we have that \(\partial \Delta_{NI}^D / \partial u_{N1} < 0 \) and \(\partial \Delta_{NI}^D / \partial u_{N2} > 0 \), hence we have \(\partial \Delta_{NI}^D / \partial t > 0 \) if and only if \(u_{N1}'(t) / u_{N2}'(t) \) greater than a critical value \(r^D > 0 \). Specifically, letting \(s = S_1 / S_2 \), we have

\[
r^D = \frac{\partial \Delta_{NI}^D}{\partial u_{N2}} = \frac{\partial \Delta_{NI}^D}{\partial u_{N1}} = \frac{\sqrt{s+1} (n_E + 2) - 2}{(2 + \sqrt{s+1}) ((n_E + 1)s + n_E)}.
\]

The isolated equilibrium is decreasing in \(t \) when \(\partial \Delta_{NI}^I / \partial t > 0 \) for all \(i \). We have that

\[
\frac{\partial \Delta_{NI}^I}{\partial t} = \frac{\partial \Delta_{NI}^I}{\partial u_{N1}} u_{N1}'(t) + \frac{\partial \Delta_{NI}^I}{\partial u_{N2}} u_{N2}'(t).
\]

From Proposition 1, we have that \(\partial \Delta_{NI}^I / \partial u_{N1} > 0 \) and \(\partial \Delta_{NI}^I / \partial u_{N2} < 0 \), hence we have \(\partial \Delta_{NI}^I / \partial t > 0 \) if and only if \(u_{N1}'(t) / u_{N2}'(t) \) greater than a critical value \(r^I > 0 \). Specifically, letting \(s = S_1 / S_2 \), we have

\[
r^I = \frac{\partial \Delta_{NI}^I}{\partial u_{N2}} = \frac{2 (\sqrt{s+1} - 1)}{s(n_E + 1)}.
\]
We have \(\lim_{r \to 0} r^\phi = 1/(n_N + 1) \) and \(\lim_{r \to r^\phi} r^\phi = 0 \). We have that the disruptive threat is increasing in \(t \) if \(u_N'(t)/u_N'(t) > r \), where \(r = \min \{r^1, r^2\} \).

It is straightforward to show that \(\partial P_D/\partial n_N < 0 \), \(\partial r^1/\partial n_N < 0 \), and \(\partial r^1/\partial s < 0 \). To show that \(\partial P_D/\partial s < 0 \), it is sufficient to show the result for \(n_N = 1 \). In this case, \(\partial r^1/\partial s^2 < 0 \), and it is sufficient to show the result for \(s = 0 \). When \(n_N = 1 \) and \(s = 0 \), we have \(\partial P_D/\partial s = -1/4 \). \(\text{Q.E.D.} \)

Proof of Proposition 4. Suppose \(u_N'(t) = u_N'(t) = u_N'(t) \). We have

\[
\frac{\partial \Delta N}{\partial t} = \left[\frac{\partial \Delta N}{\partial u_{E1}} + \frac{\partial \Delta N}{\partial u_{N1}} + \frac{\partial \Delta N}{\partial u_{N2}} \right] u_N(t) = Q^P \left(\frac{S + S^2}{n + n + 1} \right) \sqrt{S^2 + S^2 - \frac{2}{2} (S^2(n + 2) - S - 1)} u_N(t)
\]

Solving \(\partial \Delta N / \partial t = 0 \) for \(n_N \) yields

\[
N^P = 2\left(\sqrt{s + 1} - 1\right) + s(n_N - 1)
\]

which is strictly positive for \(n_N \geq 1 \) and increasing in \(s = S_1/S_2 \) and \(n_N \). Thus, \(\partial \Delta N / \partial t > 0 \) if and only if \(n_N < N^P \). A similar argument gives

\[
N^P = \frac{s(n_N + 1)}{2} - 1
\]

which is strictly greater than \(n_N \) and increasing in \(s \) and \(n_N \). The proposition then holds for \(n_1 = \min\{n_E^P, n_1^P\} \) and \(n_2 = \max\{n_E^P, n_1^P\} \). \(\text{Q.E.D.} \)

Proof of Proposition 5. We prove the result for the disruptive equilibrium; the proof for isolation is similar. Suppose the disruptive equilibrium exists and if only if \(t \geq t^0 \). At \(t = t^0 \), \(n_N = 0 \). From Proposition 1, \(\partial \Delta N / \partial x > 0 \) for \(x \in \{S_E, u_{N1}, u_E, n_E, n_E\} \). Hence, increasing the value of parameter \(S_E \), \(u_{N1} \), \(u_E \), or \(n_E \) implies that \(\min \{\Delta N / \partial y \} > 0 \) at \(t = t^0 \) and that disruption occurs for a value of \(t \) greater than \(t^0 \). Conversely, \(\partial \Delta N / \partial y < 0 \) for \(y \in \{c_E, S_1, u_{N1}, n_E\} \). Hence, increasing the value of \(c_E \), \(S_1 \), \(u_{N1} \), or \(n_E \) implies that \(\Delta N / \partial N \) < 0 and thus disruption occurs for a value of \(t \) less than \(t^0 \). If \(u_N(t) = b_0t^0 \), then changes in \(b_0 \) are equivalent to changes in \(u_N \). \(\text{Q.E.D.} \)

Proof of Proposition 6. Note that existence of the disruptive equilibrium assures that \(Q^P_S/S_2 \geq Q^P_S/S_1 - (u_{N1} - u_{N2}) \) and the existence of the isolated equilibrium assures that \(Q^I_S/S_2 \geq Q^I_S/S_1 - (u_{N1} - u_{N2}) \), because otherwise the firms are not on the segment of the demand curve that makes their equilibrium outputs locally optimal. Let \(P^D_E \) and \(P^I_E \) denote the price of the output for the new and established products, respectively, in equilibrium \(\phi = D, I \). These prices satisfy the following first-order conditions:

\[
P^D_E - \frac{q_{N1}^D}{S_2} = c_{N1} \tag{A2}
\]

\[
P^D_E - \frac{q_{N1}^P}{S_1 + S_2} = c_{N1} \tag{A3}
\]

\[
P^E_E - \frac{q_{E1}^L}{S_1} = c_{E1} \tag{A4}
\]

\[
P^D_E - \frac{q_{E1}^L}{S_1 + S_2} = c_{E1} \tag{A5}
\]

Suppose \(P^D_E \geq P^I_E \). From the demand function in Lemma 1, this implies that \(Q^P_S \leq Q^I_S \). However, from equations (A2) and (A3), \(n_N \geq n_N \) implies that \(q_{N1}^D > q_{N1}^D \) for all \(i \) and hence \(Q^P_S > Q^I_S \), which is a contradiction. We conclude that \(P^D_E < P^I_E \), and from Lemma 1 this implies that \(Q^P_S > Q^I_S \).

Now suppose \(P^D_E \geq P^I_E \). Then, equations (A4) and (A5) imply that \(Q^P_E > Q^I_E \). However, this and \(Q^P_S > Q^I_S \) imply that \(P^D_E < P^I_E \). By contradiction, we conclude that \(P^D_E < P^I_E \). Since the prices of both products fall with disruption (but are still above marginal cost), we conclude that social welfare increases, as does the consumer surplus of all consumers who purchase in the disruptive equilibrium. \(\text{Q.E.D.} \)

Proof of Proposition 7. Suppose both the disruptive and the isolated equilibrium exist. (i) Multiplicity requires that \(\pi^D_{N1} \geq \pi^D_{E1} \) and \(\pi^I_{N1} \geq \pi^I_{E1} \). If \(n_N = 1 \), then \(q^D_{N1} = q^D_{E1} \); the optimal deviation from disruption is the same as the optimal output under isolation. Hence, the profits are the same as well, \(\pi^D_{N1} = \pi^I_{N1} \), and \(\pi^D_{E1} = \pi^I_{E1} \), which implies that \(\pi^D_{N1} \geq \pi^D_{E1} \). (ii) Since \(\pi^D_{N1} = (1/2)(S_1(u_{N2} - c_{N1}) - Q^P_{N1} + q^P_{N1}) \) for \(S_1(u_{N2} - c_{N1}) < Q^P_{N1} + \max q^P_{N1} \), we have \(\pi^D_{N1} > \pi^D_{E1} \), since \(q^D_{N1} \leq 0 \). For \(u_{N2} \) sufficiently large we have \(\pi^N_{N1} > \max \{\pi^I_{N1}, \pi^I_{E1}\} \) even holding \(S_1(u_{N2} - c_{N1}) \) constant, and the isolated equilibrium is preferred even though the disruptive equilibrium exists as well. (iii) For \(c_{E1} = \bar{c}_E \)
we have \(q_N^D = Q_N^P / n_E \) for \(\phi = D, I \). We know from Proposition 6 that \(P_N^D < P_N^I \). Hence, if \(Q_N^D \leq Q_N^I \), then \(q_N^D \leq q_N^I \), and with both output and price reduced, it must be that \(\pi_{I}^{D} < \pi_{I}^{I} \). Suppose \(Q_N^E > Q_N^I \). Then

\[
\pi_{I}^{I} = \frac{Q_N^I}{n_E} \left(P_{E}(Q_N^I, Q_N^I) - c_{E} \right) \\
\geq \frac{Q_N^D}{n_E} \left(P_{E}(Q_N^D, n_E - 1, Q_N^D) - c_{E} \right) \\
> \frac{Q_N^D}{n_E} \left(P_{E}(Q_N^D, Q_N^D) - c_{E} \right) \\
= \pi_{E}^{D}.
\]

Q.E.D.

Proof of Proposition 8. (i) The within-group market share of new-technology firms under disruption is

\[
q_{N}^{D} = \frac{1}{n} \left(n_{E}(c_{N} - c_{N}) - n_{N}(c_{N} - c_{N}) \right) = \frac{1}{n} \left(n_{E}(c_{N} - c_{N}) + S_{1}u_{N1} + S_{2}u_{N2} - n_{E}(u_{N1} - c_{N}) - (u_{E1} + c_{E}) \right) - c_{N}.
\]

We have that \(q_{N}^{D} / q_{N}^{I} = \frac{q_{N}^{D}}{q_{N}^{I}} = \frac{q_{N}^{D}}{q_{N}^{I}} = \frac{q_{N}^{D}}{q_{N}^{I}} \) has the same sign as \((c_{N} - c_{N})(n_{E}(u_{N2} - c_{N}) - (n_{N} + 1)R_{N}) \). That is, \(q_{N}^{D} / q_{N}^{I} = \frac{q_{N}^{D}}{q_{N}^{I}} \) is increasing in \((c_{N} - c_{N}) \) if and only if \(R_{N} < (n_{E}(n_{E} + 1)(u_{N2} - c_{N}) \). (ii) We have

\[
q_{E}^{I} = \frac{1}{n} \left(u_{E1} - c_{E} - n_{E}(c_{E} - c_{E}) \right) \\
q_{E}^{I} = \frac{1}{n} \left(u_{E1} - u_{E1} - c_{E} - n_{E}(c_{E} - c_{E}) - n_{E}(c_{E} - c_{E}) + R_{E} \right)
\]

and hence \(q_{E}^{I} / q_{E}^{I} = \frac{q_{E}^{I}}{q_{E}^{I}} \) has the same sign as \((c_{E} - c_{E})(n_{E}(u_{E1} - c_{E}) - (n_{E} + 1)R_{E}) \). Q.E.D.

Proof of Proposition 10. Suppose \(n_{N} = 1 \). We have

\[
\frac{\partial \pi_{N}^{D}}{\partial u_{N2}} = \frac{2}{n_{E} + 2} \left(\frac{S_{2}}{S_{1} + S_{2}} \right) q_{N}^{D},
\]

\[
\frac{\partial \pi_{N}^{D}}{\partial u_{N1}} = \frac{2}{n_{E} + 2} \left(\frac{S_{1}}{S_{1} + S_{2}} + n_{E} \right) q_{N}^{D},
\]

\[
\frac{\partial \pi_{E}^{I}}{\partial u_{N2}} = q_{E}^{I}.
\]

For part (i), \(\frac{\partial \pi_{N}^{D}}{\partial u_{N1}} > \frac{\partial \pi_{N}^{D}}{\partial u_{N2}} \) follows from \(S_{2}/(S_{1} + S_{2}) < 1 \leq n_{E} \). For part (ii), since \([S_{2}/(S_{1} + S_{2})]q_{N}^{D} - q_{N}^{D} \) is increasing in \(u_{N1} \) and \(u_{N2} \), we have that \(\frac{\partial \pi_{N}^{D}}{\partial u_{N1}} > \frac{\partial \pi_{N}^{D}}{\partial u_{N2}} \) if and only if \(R_{N} \) is not too positive. Q.E.D.

Proof of Proposition 11. (i) Fix the values of all parameters except \(u_{N1} \) and \(u_{N2} \) such that \(n_{E} \geq 2 \) and \(c_{E1} = c_{E} \) for all \(i \). From Lemma 5 there exists a \(u_{N1} \) such that \(u_{N1}^{I}(u_{N1}) = u_{N1}^{D}(u_{N1}) \). Note that reducing \(n_{E} \) by 1 causes the functions \(u_{N1}^{I}(u_{N1}) \) and \(u_{N1}^{D}(u_{N1}) \) to shift to the right. Hence, for \(\epsilon > 0 \) sufficiently small, the point \((u_{N1}, u_{N2}) = (u_{N1} + \epsilon, u_{N2}(u_{N1})) \) has disruption as the unique PSNE prior to the reduction of \(n_{N} \) and isolation as the unique PSNE after the reduction in \(n_{N} \). (ii) Similar to the proof of part (i). Q.E.D.

Proof of Proposition 13. (i) With price discrimination, each segment is an independent Cournot game with linear demand and hence a unique equilibrium. It is straightforward to show that the new product is sold to segment 1, i.e., \(\max_{i} q_{N1,i} > 0 \), if and only if

\[
u_{N1} - \min_{i} \nu_{N1,i} - \frac{n_{E}}{n_{E} + 1}(u_{E1} - c_{E}) > 0.
\]

A6

Hence, the set of parameters that support a disruptive equilibrium (i.e., one in which \(\max_{i} q_{N1,i} > 0 \)) are increasing in \(u_{N1} \) and \(c_{E1} \), decreasing in \(n_{E}, u_{E1}, \) and \(c_{E1} \), and independent of \(S_{1}, S_{2}, n_{N} \), and \(u_{N2} \). (ii) The technologies are isolated with price discrimination if and only if condition (A6) is not satisfied. In the limit as \(S_{2} \rightarrow 0 \), the condition for the existence of the disruptive equilibrium converges to inequality (A6). Since the
set of parameters that support the disruptive equilibrium is decreasing in S_2, if condition (A6) is not satisfied then the disruptive equilibrium does not exist without price discrimination. A similar argument establishes that if condition (A6) is not satisfied, then the isolated equilibrium exists without price discrimination. Hence, if the technologies are isolated with price discrimination, then the isolated equilibrium is the unique PSNE without price discrimination. Q.E.D.

Appendix B

A discussion of mixed-strategy equilibria follows.

If a PSNE does not exist, we expect there to be a mixed-strategy equilibrium of the following form. The established-technology firms expand output to the point where the new-technology firm with the greatest incentive to deviate from the isolated equilibrium is indifferent between disruption and isolation, and this firm then disrupts with a probability that makes the output of the established firms optimal. In this Appendix we give details for the case where $n_N = 1$ and report on numerical analyses that show that the factors that increase the threat of disruption in Section 4 increase the probability of disruption in the mixed-strategy equilibrium as well.

Restrict attention to $n_N = 1$ and let $\delta \in (0,1)$ be the probability that the new-technology firm disrupts. That is, with probability $1 - \delta$ the new-technology firm produces its isolated output $Q^I_N = S_2(u_{N2} - c_{N1})/2$ and with probability δ it produces some greater disruptive output Q_N. Given this strategy, the objective of the established firms is

$$\max_{E \in \{1,2\}} \left(1 - \delta \right) \left(u_{E1} - \frac{Q_E}{S_1} \right) + \delta \left(u_{E1} - \frac{S_1(u_{N1} - u_{N2})}{S_1 + S_2} - \frac{Q_E + Q_N}{S_1 + S_2} - c_{Ej} \right),$$

and their total output is the following function of δ:

$$\bar{Q}_E(\delta) = \left(\frac{n_E}{n_E + 1} \right) \left(\frac{S_1(S_1 + S_2)}{S_1 + S_2(1 - \delta)} \right) \left(u_{E1} - \bar{c}_E - \delta \left(\frac{Q_N}{S_1 + S_2} + \frac{S_2(u_{N1} - u_{N2})}{S_1 + S_2} \right) \right).$$

The disruptive output for the new-technology firm comes from

$$\max_{Q_N} \left(\frac{S_1 u_{N1} + S_2 u_{N2}}{S_1 + S_2} - \frac{\bar{Q}_E(\delta) + Q_N}{S_1 + S_2} - c_N \right),$$

and hence

$$Q_N = \frac{1}{2} \left(S_1 + S_2 \right) \left(\frac{S_1 u_{N1} + S_2 u_{N2}}{S_1 + S_2} - c_N - \frac{\bar{Q}_E(\delta)}{S_1 + S_2} \right).$$

The new-technology firm must be indifferent between its two output levels, i.e.,

$$\frac{(\bar{Q}_E(\delta))^2}{S_1 + S_2} = \frac{(Q^I_N)^2}{S_2}. \quad (B1)$$

Solving equation (B1) for $\bar{Q}_E(\delta)$ yields $\bar{Q}_E(\delta) = S_1(u_{N1} - c_N) - (\sqrt{(S_1 + S_2)^2 - S_2})(u_{N2} - c_N)$. There are now two expressions for $\bar{Q}_E(\delta)$ from which one can solve for a closed form expression for δ.

Relative to the isolated equilibrium, the mixed-strategy equilibrium has higher output of the established product, $\bar{Q}_E > Q^I_E$, and higher expected output of the new product because $Q_N > Q^I_N$. Hence, the price of the established product falls, $P_E(\bar{Q}_E, Q_N) < P_E(\bar{Q}_E, Q^I_N) < P_E$, as does the expected price of the new product, because $P_N(Q_N, \bar{Q}_E) < P_N$. Finally, social welfare is higher. These results are consistent with the effects of disruption in Proposition 4.

Because the closed-form expression for δ is very complex, we resort to numerical analysis to characterize comparative statics on δ. We created 2.62×10^{10} parameter combinations within the following bounds: S_1 and S_2 between 0 and 1, c_N and \bar{c}_E between 0 and 2, u_{N1} and u_{N2} between c_N and 10, u_{E1} between \bar{c}_E and 10, and n_E between 1 and 4. Within these bounds we allowed the parameters to vary by increments of 0.1 (except for n_N, which we restricted to whole numbers) and considered every possible combination of parameters. We identified 8.53×10^8 parameter combinations for which the mixed-strategy equilibrium exists. In all cases, we found that the probability of disruption δ is increasing for small changes in S_1, \bar{c}_E, and u_{N1} and decreasing for small changes in S_2, c_N, u_{N2}, u_{E1}, and n_E. These results are consistent with the results in Proposition 1 and Proposition 2 part (i).

References

© RAND 2005.

