Renegotiation & Relationships in Supply Chain Management

Erica L. Plambeck Graduate School of Business Stanford University Terry A. Taylor Graduate School of Business Columbia University

Questions

- 1. Under what circumstances are supply contracts renegotiated ?
- 2. In what context is incorporating renegotiation important for fidelity of model ?
- 3. What managerial insights can be obtained by modeling renegotiation ?

contract	information revealed	renegotiate	
Purpose:	Examples:		
provide incentives	exogenous	agreement to	
for investment:	operating conditions:	revise contract,	
• capacity	• variable cost	all firms benefit	
• innovation	• demand		
convey information: • demand forecast	by choice of contract		
			
renegotiation affects incentives			

Contracting for Supply: Sharing Demand Forecasts (*Cachon and Lariviere, 2001*)

- Supplier must build capacity before demand is realized
 - prior: buyer's demand = $\begin{cases}
 HX & \text{with probability } \rho \\
 LX & \text{with probability } 1-\rho
 \end{cases}$
- Buyer knows demand forecast {H,L}
- H-Buyer offers higher price to signal H → supplier builds more capacity than with common forecast information

contract: unit price	information revealed	renegotiate
buyer signals forecast & provides incentive for supplier to build	HIGH price \rightarrow supplier believes demand = HX LOW price \rightarrow supplier believes demand = LX	alternative price induces optimal capacity investment & greater expected profit
capacity L-buy so su	ver would mimic H-bu	yer & offer HIGH price ve demand = HX

Renegotiation I	Design (Aghion, Dewatri	pont & Rey 1994)
Give all bargain penalty for de 	ning power in renegotia lay in bargaining (e.g. fina	tion to one firm ancial "hostage")
contract: price*, quantity*	information	renegotiate
buyer investment stimulates demand	revenue(quantity)	Buyer makes TIOLI offer with optimal quantity
supplier investment reduces production cost	production cost(quantity	al expected profit
Simple Contr	act + Rependiation is	

n 96
nformatior

Capacity Allocation: Are Simple Contracts + Renegotiation Optimal ?

Model:	 Supplier with N buyers contract for capacity investments in capacity & innovation renegotiate capacity allocation
Theory:	 Court remedy for breach affects renegotiation investments optimal contract structure profitability

Court Remedy for Breach of Contract		
Expectation Damages	Specific Performance	
pay \$ to put injured firm in same financial position as if contract were performed	must perform contract (prohibitively large \$ penalty)	
supplier can deliver < Q and pay for lost revenue or substitute capacity	supplier must deliver Q unless buyer agrees to less	
routine	increasingly common in procurement	

Are Simple Contracts + Renegotiation Optimal ?			
	Expectation Damages	Specific Performance	
dominant (TIOLI) supplier	optimal investment	excess capacity, too little innovation	
buyers have some bargaining power	too little capacity, excess innovation	optimal investment *	
* requires separability condition			

Summary

• Simple contract + renegotiation may be optimal

• Outcome of renegotiation depends on:

- court remedy for breach of contract
- contract design (e.g. financial "hostages")
- information asymmetry

Questions

- 1. Under what circumstances are supply contracts renegotiated ?
- 2. In what contexts is incorporating renegotiation important for fidelity of model ?
- 3. What managerial insights can be obtained by modeling renegotiation ?

Discussion Questions

How, fundamentally, does repeated interaction change how firms in a supply chain behave?

What kinds of research approaches can deepen our understanding of this phenomenon?

What are the important research questions our community should address?

Agenda

How Relationships Transform Supply Chains

- Example: Delivery Performance
- Overview of Initial Research
- Discussion

Delivery Performance - Motivation

- Buyers provide specific instructions for delivery (e.g., time, packaging, labeling)
- Buyers penalize suppliers for asserted delivery noncompliance through "charge backs"
- Difficult or impossible for third party to verify delivery compliance

Delivery Performance - Model

In each period *t* supplier chooses delivery effort $e_t \mu[0,1]$ (the probability of on-time delivery)

 $g(e_t)$ = supplier's cost of effort; convex, increasing $r(e_t)$ = buyer's expected revenue

Relational contract specifies formal payment f_t discretionary payment d_t for on-time delivery supplier strategy: effort e_t , whether to transact buyer strategy: whether to transact, make discretionary payment

A relational contract is *self-enforcing* if it describes a subgame perfect Nash equilibrium

Delivery Performance Commonly Observed – Optimal Relational Contract Design Problem

Delivery Performance Commonly Observed -Optimal Relational Contract

$$S^{c} = \max_{e} \{r(e) - g(e)\}$$
subject to $\frac{\delta}{1 - \delta} [r(e) - g(e) - (b \cdot s)] \ge g(e)$
Let e^{c} denote the solution to the above and e^{*} denote the solution for the integrated system
An optimal relational contract is
$$e_{t} = e^{c}$$

$$d_{t} = g(e^{c})$$

$$f_{t} = s \cdot g(e^{c}) \circ e^{c} g(e^{c})$$
Supplier underinvests: $e^{c} \cdot e^{*}$

$$e^{c}$$
 and S^{c} are increasing in g and decreasing in (b \cdot s)

Delivery Performance Privately Observed – Optimal Relational Contract

$$S^{p} = \max_{\{e,\tau\}} \left\{ \frac{r(e) - g(e)}{1 - \delta[1 - (1 - e)\tau]} \right\}$$

subject to $e \in \arg \max_{\hat{e}} \left\{ [1 - (1 - \hat{e})\tau] \frac{\delta[r(e) - g(e)]}{1 - \delta[1 - (1 - e)\tau]} - g(\hat{e}) \right\}$
Let (e^{p}, τ^{p}) denote the solution to the above
An optimal relational contract is
 $(e_{i}, \tau_{i}) = (e^{p}, \tau^{p})$
 $d_{i} = g\tau^{p} [r(e^{p}) \circ f_{i}]/[1 - g(1 \circ \tau^{p})]$
 $f_{i} \sqcup [\{[1 \circ g(1 \circ \tau^{p})]g(e^{p}) \circ ge^{p} \tau^{p} r(e^{p})\} + [1 \circ g[1 \circ (1 \circ e^{p}) \tau^{p})], r(e^{p})$
Private monitoring necessitates termination: $\tau^{p} \land 0$
Common monitoring (e.g., RFID, 3PL) increases profit: $S^{c} \land S^{p}$
but may lead to lower delivery effort: $e^{c} < e^{p}$

Economics Literature			
Levin (2003)	 Optimal relational contracts in principal-agent setting Under common monitoring, stationary contract optimal Under private monitoring in which informed party does not maintain private information from period to period, termination contract optimal 		
Abreau, Milgrom, Pearce (1991) Kandori and Matsushima (1998)	Under private monitoring, can improve on termination contracts where performance is reviewed every period Instead, review performance every <i>T</i> periods Lengthening review period improves incentives by allowing more accurate performance assessment, provided g is sufficiently large		

Overview of Initial Research			
	Topic	Description	Insights
Cohen, Ho, Ren, Terwiesch (2003) Terwiesch, Ren, Ho, Cohen (2004)	Sharing demand forecasts	Privately informed buyer shares non- binding forecast with supplier	Empirically, suppliers penalize buyer for unreliable forecasts by providing lower service level
Plambeck and Taylor (2004)	Joint production	Success of production process depends on efforts of buyer and supplier	Optimal relational contract has simple form (correlated termination), even allowing for Markovian dynamics

Overview of Initial Research (cont.)			
	Торіс	Description	Insights
Tunca and Zenios (2004)	Auctions vs. Relationships	Suppliers sell low- quality products in auction Supplier sells high- quality product through long-term relationship	Presence of auction may facilitate or undermine ability of supplier to sell high- quality product
Taylor and Plambeck (2003)	Innovative product procurement	Being unable to contractually commit to purchase, buyer instead promises to do so	Type of promise buyer should make depends on exogenous factors

Limitations of Formal Contracts

At least is some cases, contractual commitments to purchase are not enforced:

"Long-term agreements are not worth the paper they're written on"

"We can go sue our customers, but that's not the smartest option" because enforcement is costly and acrimonious:

short-term gain for supplier is outweighed by long-term future loss from damaged relationship

To what extent is firm behavior is driven by long-term relationships rather than the coercive power of court system?

Discussion Questions

How, fundamentally, does repeated interaction change how firms in a supply chain behave?

What kinds of research approaches can deepen our understanding of this phenomenon?

What are the important research questions our community should address?