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Static and Dynamic Pricing Of Excess Capacity in a Make-
To-Order Environment 

 
 
 

ABSTRACT 

 
Recent years have seen advances in research and management practice in the area of 

pricing, and particularly in dynamic pricing and revenue management.  At the same time, 

researchers and managers have made dramatic improvements in production and supply chain 

management.  The interactions between pricing and production/supply chain performance, 

however, are not as well understood.  Can a firm benefit from knowing the status of the supply 

chain or production facility when making pricing decisions?  How much can be gained if pricing 

decisions explicitly and optimally account for this status?  This paper addresses these questions 

by examining a make-to-order manufacturer that serves two customer classes – core customers 

who pay a fixed negotiated price and are guaranteed job acceptance, and “fill-in” customers who 

make job submittal decisions based on the instantaneous price set by the firm for such orders.  

We examine four pricing policies that span a range of complexity and required knowledge about 

the status of the production system at the manufacturer, including the optimal policy of setting a 

different price for each possible state of the queue.  We demonstrate properties of the optimal 

policy, and we illustrate numerically the financial gains a firm can achieve by following this 

policy vs. simpler pricing policies.  The four policies we consider are (1) state-independent 

(static) pricing, (2) allowing fill-in orders only when the system is idle, (3) setting a uniform 

price up to a cut-off state, and (4) general state-dependent pricing.  Although general state-

dependent pricing is optimal in this setting, we find that charging a uniform price up to a cut-off 

state performs quite well in many settings and presents an attractive trade-off between ease of 

implementation and profitability.  Thus, a fairly simple heuristic policy may actually out-perform 

the optimal policy when costs of design and implementation are taken into account. 

 

 



 2 

1.  INTRODUCTION 

 

MetalFab, Inc.1 produces fabricated metal parts mostly for use in the power generation 

industry.  The parts are made from expensive materials – some 4x8-foot sheets of material cost 

$20,000 – and, not surprisingly, the fabricated parts have very tight tolerances.  MetalFab is a 

large job shop with about 60 highly skilled shop floor employees who operate metal bending and 

metal cutting machines, as well as a variety of welding equipment.  At this writing, 

approximately 80% of MetalFab’s output is sold directly to General Electric, or to first tier GE 

suppliers.  In keeping with MetalFab’s policy, we will refer to this output as belonging to GE.   

MetalFab can forecast orders from GE and GE’s suppliers, but the forecast error can be 

quite high.  Sometimes MetalFab production planners will have firm forecasts – and these 

forecasts remain firm until the order is delivered.  More often, however, GE will change the 

order quantity and due date several times while the order is outstanding.  In fact, GE’s systems 

will occasionally produce a purchase order that is already past due when the order is placed.  

(The authors observed a case in which an order placed in September had a due date of the 

previous May!)  Taken together, the blend of firm forecasts, changes, and emergency orders 

create a situation that is well captured by a mean forecast with a fairly high variance around that 

mean.  Similar situations could arise in cases when a single large customer aggregates demand 

forecasts from many different locations and provides an aggregate request to its supplier. 

From MetalFab’s perspective, GE orders form the core of its business, while the other 

orders that may take up the remaining 20% of its capacity are treated as “fill-in” orders.  From a 

marketing standpoint, one approach to accepting and pricing fill-in orders is to take as many as 

possible, charge the same price as the core orders, and let the production planners and factory 

workers try to keep up.  The danger with this approach, of course, is that it may not be a long-run 

profit-maximizing strategy; and service performance, for both GE and fill-ins, could suffer.  An 

alternative approach is to proactively seek fill-in orders when capacity utilization is running low, 

charging a low price to attract those customers; and when the capacity utilization is high, 

charging a high price and accepting only limited fill-in orders.  This alternative raises the issue of 

how to (i) price dynamically over time depending on the state of the production system, (ii) 

endogenously determine “low” versus “high” capacity utilization, and (iii) incorporate core 



 3 

customer arrivals (i.e., orders from core customers) in determining the pricing policy for fill-in 

customers.  For example, when a potential fill-in customer asks for a bid for a given part, what 

price should MetalFab quote?  Should that price depend on the current level of congestion at the 

factory?  If so, how?  Finally, what benefits are available if the firm wisely uses capacity 

information when making pricing decisions?  This paper addresses these questions. 

We focus attention on four models that take into consideration both core and fill-in 

customer arrival rates: (1) state-independent (static) pricing – where MetalFab sets a price, p, for 

fill-in customers without regard to the current state of the factory; (2) allowing fill-in jobs at a 

chosen price p only when the factory is idle; (3) allowing fill-in jobs at a chosen price p only 

when there are s or fewer jobs in the production system, where both s and p are decision 

variables; and (4) general state dependent pricing – i.e. potentially setting a different price for 

fill-in orders for every possible state of the factory.  To ensure satisfactory service, we impose a 

constraint on expected waiting time for core customers.  We compare the optimal solutions 

obtained in the above four cases, report the magnitude of the benefit from utilizing increasing 

amounts of information, illustrate interesting properties of the solutions, and examine conditions 

under which one solution is superior to another. 

Before reviewing the relevant literature, it is important to note that this problem is quite 

general and is generating much interest beyond high precision job shops like MetalFab.  With the 

advent of modern pricing software such as that offered by DemandTec, ProfitLogic, and 

KhiMetrics, many companies now are devoting considerable time and energy to getting prices 

right.  However, recent trade press articles suggest that firms have traditionally been slow to 

adopt sophisticated pricing models (Reda 2002), have priced products solely on cost (At What 

Price? Guidelines for a Customer-Focused Pricing Strategy 2000), and often simply employ 

“what-if” analyses without incorporating the interactions across functional areas (Retail Revenue 

Management 2001, Lester 2002).  Further, the transition to the Euro has elevated this issue for 

companies doing business in Europe, and many are appointing senior “pricing officers” with 

direct responsibility over pricing decisions.  Furthermore, many firms are beginning to realize 

that price changes should be made with a deeper understanding of the supply chain (Cisco 

Thought Leadership Summit 2001).  If a firm cuts price to stimulate demand, but the factory or 

supply chain is currently overloaded, they risk some very unhappy customers.  On the other 

                                                                                                                                                             
1 The name of this privately owned company has been disguised at the owner’s request. 
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hand, if the supply chain and factories currently have excess capacity, marketing personnel may 

wish to decrease price to consume some of that capacity.  In addition, some of the leading 

suppliers of supply chain software are developing linkages to pricing software.  Manugistics, for 

instance, has bought Talus, a revenue management software provider with the expressed intent of 

linking these two areas.  This research is designed to generate insight for managers about the 

benefits of accounting for the supply chain when making pricing decisions. 

The rest of this paper is organized as follows.  In Section 2 we review the relevant 

literature.  In Section 3, we present the four models and corresponding analytical results.  A 

numerical comparison of the policies is presented in Section 4.  Section 5 contains a summary 

discussion and directions for future research.   

 

2.  LITERATURE REVIEW 

 

The last two decades have seen significant research progress on the interaction of pricing 

and operations.  This literature falls into two fundamental categories:  pricing/inventory models 

and pricing/queuing models.  In the first case, generally speaking, prices are determined jointly 

with inventory decisions, or are determined based on current inventory levels.  In the second 

case, prices are used to control the arrival rate to a queue or queues and may or may not be set 

based on the current queue length.  For a recent review of this literature, see Fleischmann, Hall & 

Pyke (2004). 

Pricing/inventory models have a long history, beginning with single period, single price, 

single quantity models like those of Whitin (1955), Karlin & Carr (1962), and Lau & Lau (1988).  

Multiperiod models typically assume a single, constant price, and deterministic demand.  

Examples include Wagner & Whitin (1958a), Wagner & Whitin (1958b), Thomas (1970), 

Kunreuther & Richard (1971), Kunreuther & Schrage (1973), Pekelman (1974), Eliashberg & 

Steinberg (1987), Eliashberg & Steinberg (1991), Gilbert (2000), Arvind Rajan & Steinberg 

(1992), and Sogomonian & Tang (1993). 

Models with stochastic demand include Thomas (1974) who addresses an N period 

problem and proposes a heuristic policy of the form (s, S, p), where price is a parameter in the 

probability distribution of demand.  Federgruen & Heching (1999) consider a infinite horizon, 

order-up-to model that has a stationary base stock policy as the optimal policy structure in the 
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case of zero leadtimes.  When leadtimes are nonzero, the optimal policy depends on individual 

order epochs and becomes intractable.  However, price is constant and there is no opportunity to 

change price within period.  Chen & Simchi-Levi (2002) consider stationary infinite horizon 

models with fixed costs and show that the price p in the optimal policy depends on the inventory 

level.  In a seasonal demand model, Biller, Chan, Simchi-Levi, & Swann (2002) and Chan, 

Simchi-Levi, & Swann (2001) show that, from an inventory perspective, pricing may help meet 

capacity restrictions by smoothing out demand.  Our work differs from this stream of research 

insofar as we consider a make-to-order system and explicitly model the production system.  

In the price/queuing literature, Naor (1969) suggests imposing tolls on new customers to 

keep queue size in check, where customers have Poisson arrivals and service times are 

exponential.  Upon arrival, customers see the queue length and choose to stay or go.  

Balachandran (1972) studies a system in which customers make a payment to purchase a place in 

the queue.  Larger payments buy higher priorities, and customers know the state of the system 

when they arrive. Customers have delay costs, so they minimize their total cost which includes 

payment and delay.  Adiri & Yechiali (1974), on the other hand, examine the profit-maximizing 

price for jobs joining a priority queue where prices vary depending on the priority level of the 

queue.  When a customer arrives, he receives information on the state of the system and then 

decides whether to join the queue or not.  The authors use an iterative process where prices are 

set first, then customers calculate optimal control limits (i.e., join the queue if the queue length is 

*n≤ ), then the firm adjust prices, and so on.  Stidham (1985) considers a variation where arrivals 

are restricted by charging a fee or closing the queue.  He considers two cases; in one, the firm is 

ignorant of the current state of the system, in the other, the firm knows the current state and 

exercises dynamic flow control.  In our paper, we consider a more complex business-to-business 

environment where the firm under consideration decides at each instant what price to set for a 

customer order.  Further, we examine dynamic pricing in an environment of customer 

heterogeneity (core customers vs. fill-in customers).      

Mendelson (1985) considers users of computing resources who have a positive delay cost 

and explicitly accounts for an externality cost (the delay cost that a user inflicts on all other 

users) and examines the optimal capacity choice.  However, he considers only one static price to 

keep the queue length regulated.  In a similar static setting, Mendelson & Whang (1990) consider 

internal pricing, i.e., transfer pricing for computer resources, and they address both resource 
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pricing (a price that determines if customers join the system), and priority pricing (set prices 

based on priorities).  Results show that long jobs should be charged more than in proportion to 

their resource requirements.  In their comments on future research, the authors state “it would 

also be of interest to study a dynamic version of our model, where current queue information is 

available and is being utilized in setting the resource and priority prices.”  This is, in part, what 

we do in this paper.  Similarly, Dewan & Mendelson (1990) account for both a delay cost and a 

capacity cost where users have nonlinear delay cost functions.  Customers and service requests 

are homogeneous.  Users also decide to enter the system based on steady state queue lengths 

rather than on the current queue status, and the price is simply the opportunity cost of servicing 

that request.  Stidham (1992) evaluates a variant of the Dewan and Mendelson model but allows 

for an upper bound on arrival rate.  Customers cannot observe the state of the system on arrival, 

but a price is charged for admission.  So the system designer must choose a service rate and a 

price (or arrival rate).  The new constraint leads to a system in which the first order conditions 

may not lead to a globally optimal solution (see also Rump & Stidham (1998) and Kim & 

Mannino (2003)).  Plambeck (2000), on the other hand, considers two classes of customers – 

delay sensitive and delay insensitive.  Static prices are set for each class, but leadtimes are 

dynamically quoted.  The heuristic policy sets a price and leadtime quote that induces heavy 

traffic.  In this paper, we examine both static and dynamic pricing policies and evaluate the 

optimal solution analytically and consider a different segmentation of core versus fill-in 

customer segments. 

In the marketing literature, many papers have appeared on dynamic pricing (Baker, Marn, 

& Zawada (2001),  Hall, Kopalle, & Krishna (2002), Kopalle, Rao, & Assunção (1996), Kopalle, 

Mela, & Marsh (1999)), but most of that research has been in the area of consumer marketing 

(Gijsbrechts (1993)) and less so in the area of business-to-business marketing (Noble & Gruca 

(1999)).  More importantly, the pricing research in marketing has typically ignored the supply 

chain implications – for example, Raman & Chatterjee (1995) consider the impact of demand 

uncertainty on the optimal price path without incorporating the corresponding upstream supply 

chain implications.   

Thus, we propose an analytical, profit maximizing approach for a manufacturer’s pricing 

decisions over time by considering the supply chain impact of dynamic pricing decisions.  The 

proposed model considers customer heterogeneity, stochastic demand, and supply chain 
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(manufacturing capacity) constraints.  The decision variables consist of a set of prices offered at 

different points in time that may be a function of the state of the manufacturing system.  The 

contributions of this paper lie in (1) determining optimal dynamic pricing policies by taking into 

consideration the key supply chain issue of current congestion levels, and (2) characterizing the 

conditions under which one policy is superior to another via numerical simulations.   

 

3.  THE MODELS 

 

3.1.  Modeling Framework 

We assume that a firm operating a production system faces two types of demand.  The 

first is demand from “long-term” customers (herein also referred to as core customers) who enter 

into long-term agreements with the firm by specifying the average quantity required over time at 

a pre-established price.  The second type of customer is a “short-term” / “brand switching” 

customer (herein also referred to as fill-in customers).  These short-term customers approach the 

firm with immediate needs and will do business with the firm if they find the price and any 

production delays acceptable.  (Seifert, Thonemann, & Hausman (2004) show that a firm can 

increase profits by procuring a moderate fraction of their demand on the spot market, i.e. as fill-

in customers to the firm we model.)  The production system is operated on a “make-to-order” 

basis, meaning that the firm does not hold inventory of finished or partly finished goods in 

advance of customer demand.  Such a policy could follow from the economics of the situation 

(e.g., as in the MetalFab case with expensive finished goods and therefore risky inventory 

investments) or the characteristics of the products (customized on an order-by-order basis).  We 

assume that both types of demand follow a Poisson arrival process.  We denote the average 

arrival rate of core customers by cλ  and the average arrival rate of fill-in customers by fλ .  

Given the long-term, contractual agreements between a firm and its core customers, we consider 

the arrival rates of core customers as given.  However, the arrival rate for fill-in customers 

depends on the prices charged via a downward sloping demand function, ( )ff pλ , where fp  is 

the price charged for fill-in customers.  We assume that the time required to complete either core 

or fill-in orders is exponentially distributed with a mean of µ1 .   
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We model the above production system as single-server queueing system.  Although this 

framework is a simplification of the serial and parallel arrangement of workstations that exists in 

most production systems, our abstraction captures the qualitative nature of the congestion and 

delay that exist in real production systems in an analytically tractable manner.  We assume that 

all jobs are handled on a first-come-first-served basis. 

In addition to the revenue collected from customers, we assume that the firm is also 

concerned with the throughput time of customer orders.  We capture this concern via a constraint 

on the expected throughput time of core customer orders, which we denote by cW .  We focus on 

waiting time for the core customers because these customers likely have entered into long-term 

agreements with expectations of a certain level of service or with a level of service contractually 

specified.  Our use of expected throughput as a performance measure differs from typical use of 

a fixed, contracted delivery time.  Alternative formulations might use a fractile of the throughput 

time distribution as a performance measure, e.g., 90% of jobs must be completed in 15 days or 

less.  Recognizing that throughput time distributions can be difficult to characterize for many 

types of queueing systems, and recognizing that the first moment of a distribution captures much 

relevant information, we use the expectation.  This approach may also be justified in a setting 

where customers are risk neutral and bear a linear delay cost (see, for example, Mendelson 

(1985)).  In such a setting, the constraint on expected waiting time is also a constraint on the 

expected delay cost incurred.  In other words, we have 0WWc ≤ , where cW  is the expected wait 

in the system for core customers and 0W  represents the maximum allowed expected wait for core 

customers.  As in many dynamic settings (Kopalle et al. (1996)), the firm is interested in 

maximizing the sum of expected revenue over time.  Using a per-period profit criterion 

(Bertsekas (1987)), this translates to maximizing average expected revenue collected per unit 

time.  Below we present four models that consider different pricing policies for fill-in customers.  

They are:  

1. State-independent pricing, which results in a constant price, 

2. State-dependent pricing where jobs are admitted only when the system is idle,  

3. State-dependent pricing where jobs are accepted up to a certain state and are charged a 

uniform price, and 

4. General state-dependent pricing, in which no constraints are placed on the pricing policy.   
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Models 1 through 3 consider policies in which constraints are placed on the extent to which state 

information is utilized in making pricing decisions.  These policies were chosen because they 

represent natural ways in which limited information might be used in practice. 

 

3.2.  Model 1: State-Independent Pricing 

Here we study the case of a firm that sets a uniform price for fill-in jobs independent of 

the current state of the factory.  We do so for benchmarking purposes because such a static 

policy is simple and requires no real-time information about factory status.  It does, however, 

require information about time-average system behavior, as might be available from historical 

data.  This policy serves as a baseline to compare the performance of our other policies that make 

use of system state information.  State-independent pricing is also consistent with the behavior of 

core customers whose arrival rate is independent of the system state.  This is based on the nature 

of long-term contracts that often specify a fixed price and a service level commitment, where the 

supplier manages its production system to satisfy those commitments.   

In this context, the problem faced by the supplier is to maximize the expected revenue 

collected from fill-in customers per unit time, i.e., 

( ){ }ppf
p

λmax  (1) 

subject to: 

0WWc ≤ . 

The simple state independent problem outlined above can be modeled as an M/M/1 queue 

with arrival rate given by ( )pfc λλ +  and service rate given by µ .  Accordingly, we have (see, 

e.g., Gross & Harris (1985)): 

( )( )p
W

fc

c λλµ +−
= 1

 (2) 

We assume 0>− cλµ  and 0

1
W

c

≤
−λµ

, which implies that the expected wait in the absence of 

fill-in arrivals is less than the upper bound on expected wait, which is necessary for feasibility.  

Note that cW  and fW  (where fW  is the expected throughput time for fill-in customer orders) are 

equal for this policy.  Problem (1) can be solved via Lagrangean methods (where β  denotes the 
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Langrage multiplier).  The solution consists of two possible cases depending on whether the 

waiting time constraint is binding.  The solution is presented below as Theorem 1. 

 

Theorem 1.  State-Independent Pricing.  

(a)  For problem (1), we have the following two cases: 

Case 1:  0=β  and the optimal price *p  satisfies ( ) ( ) 0' *** =+ ppp ff λλ ; 

Case 2:  ( )( )
( )
( )













+














−−
=

*

*
*

2

* '
1

p

p
p

p
f

f

fc λ

λ

λλµ
β  and the optimal price *p  satisfies 

( )
0

* 1

W
p cf −−= λµλ . 

(b)  Under linear demand, the first-order conditions are sufficient for optimality. 

 

All proofs are in the Appendix.  

 Cases 1 and 2 in Theorem 1 correspond to the instances where the waiting time constraint 

is either not binding or binding, respectively.  If the waiting time constraint is not binding, the 

solution is simply that of a standard monopolist in which all the operational complexities of the 

system can be ignored, i.e., in which the firm is interested only in maximizing ( )ppλ .  This 

solution is simple and it reveals to us what a job is worth.  The term ( ) **' ppfλ  measures the cost 

of increasing price by accounting for the value of lost demand that results from a price increase.  

The factor ( )*' pfλ  is the reduction in demand for a unit increase in price, and the factor *p  is the 

return earned per unit of demand.  Here, the value of a job is simply *p , but we will demonstrate 

that this factor takes on more complex forms which yield interpretations that can help managers 

understand both the benefits and costs of taking on additional work. 

 If the waiting time constraint is binding, the Lagrange multiplier β  provides a measure 

of the cost of the constraint.  This cost enters into the calculation of the optimal price in a way 

that assesses an opportunity cost for each job that is accepted based on its impact on the expected 

waiting time.  In other words, we have, 
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 ( ) ( ) 0' *** =










∂
∂

−+
f

c
ff

W
ppp

λ
βλλ . (3) 

Note that if there were a variable cost c  associated with performing each job and operational 

complexities were ignored, then the first-order condition for the optimal price would be identical 

to (3) with c  replacing 
f

cW

λ
β

∂
∂

.  This is consistent with our interpretation of 
f

cW

λ
β

∂
∂

 as a variable 

cost associated with each job.  A numerical example is presented below. 

 

Example 1.  Assume fill-in customers exhibit a linear demand curve of the form 

( ) ppf 1.0100 −=λ .  Jobs from core customers arrive at an average rate of 8 per month and the 

production system can complete 10 jobs per month on average if continuously busy.  The firm 

imposes an expected waiting time constraint of one month for core customers.   

 

 Ignoring the operational complexities of this problem would result in choosing a price of 

$500 per fill-in arrival, resulting in 50 such jobs per month on average.  Clearly such a scheme 

would overwhelm the firm’s productive capacity of 10 jobs per month, and we can conclude that 

the waiting time constraint must be binding.  Using the results of Case 2 from Theorem 1, we 

conclude that the optimal arrival rate is a single fill-in job per month on average at a price of 

$990.  Even though the waiting time constraint is binding, the firm should still accept the 

occasional, high revenue job.  The value of the Lagrange multiplier β  is here $980. 

 

3.3.  Model 2: State-Dependent Pricing – Admitting Jobs When Idle 

 In this subsection we study, as a first-step towards developing more complex dynamic 

pricing policies, a simple form of dynamic pricing where fill-in arrivals are allowed only when 

the system is otherwise idle.  This policy captures the idea that a factory manager may wish to 

only accept fill-in work when the factory is relatively non-congested.  Under this policy, the 

system under study is a Markov chain with departure rate µ  in every state and arrival rate cλ  in 

every state except state zero, where the arrival rate is fc λλ + .  Lemma 1 below summarizes 

some basic properties of such a system. 
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Lemma 1.  Admit Fill-in Jobs When Idle – Properties.  For the Markov chain described 

above, we have: 

(a) The steady-state probability that the system is idle, denoted by 0π  is given by: 

 
f

c

λµ
λµπ

+
−

=0 ; 

(b)  The expected waiting time in the system for core customer arrivals is given by: 

 ( ) ( ) 



























−
+

−






 +
+=

µ
λ

µ
λµ

λλ
µ
π

cc

fc
cW

1

1

1

1
1

2
0 . 

 

For this policy, the expected waiting time for fill-in customers is just their service time, since 

they only enter the system when it is idle.  The problem faced by the firm in this case is to 

maximize the expected revenue from fill-in customers per unit time: 

( ){ }ppf
p

λπ0max  (4) 

subject to: 

 00 ≤−WWc . 

Note that the firm potentially collects revenue from fill-in customers only when the production 

system is idle, as captured by the factor 0π  in (4).  Theorem 2 below summarizes the solution for 

problem (3). 

 

Theorem 2.  Admit Fill-In Jobs When Idle – Solution.   

(a) For problem (4), we have the following two cases: 

Case 1:  0=β  and the optimal price *p  satisfies ( ) ( ) 0' *** =+







−
Π− ppp f

c
f λ

λµ
λ , where 

( ) **
0 ppfλπ=Π  represents the optimal expected return per unit time from fill-in jobs; 

Case 2:  0≠β  and the optimal price *p  and β  satisfy 

 ( ) ( ) 0' *

0

** =+










∂
∂

−
−
Π− p

W
pp f

f

c

c
f λ

λπ
β

λµ
λ  and 
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 ( )( )
( )

( ) ( ) 



























−
+

−








 +
+

+

−=
µ
λ

µ
λµ

λλ

λµµ
λµ

cc

p

p
W fc

f

c

1

1

1

1
1

2

*

*0 . 

(b)  For linear demand, the first-order conditions are sufficient for optimality. 

 

Note that for this form of state-dependent pricing, an opportunity cost enters into the calculation 

of *p  in Theorem 1 even when the waiting time constraint is non-binding.  This opportunity 

cost, which also appears in the expression for *p  when the waiting time constraint is binding, 

takes the form: 

 
cλµ −

Π
, (5) 

where Π  is the optimal return from the fill-in jobs per unit time.  We note that: 

 
cf λµλ

π
π

−
=

∂








 −∂
1

1

0

0

. (6) 

The above factor measures the change in the relative odds that the system is in the set of states in 

which fill-in arrivals are not allowed.  Thus, (6) measures the expected lost revenue that results 

from increasing the arrival rate and its subsequent effect on the steady-state probabilities. 

 For the case where the waiting time constraint is binding, a second opportunity cost, 

f

cW

λπ
β

∂
∂

0

, appears in the first-order condition.  This cost can be interpreted as capturing the 

waiting time externality caused by a job arrival.  The factor, 
f

cW

λ
β

∂
∂

, captures the cost of the 

increased expected waiting time for core arrivals (via the shadow price of the waiting time 

constraint β ) due to an increase in fλ  of one unit.  This cost is translated into a cost that is 

relevant for an actual arrival via the factor 
0

1

π
, which measures the expected number of fill-in 

arrivals until one finds the system idle and is admitted.  A numerical example is presented below. 
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Example 2.  Again, we assume the potential short-term customers exhibit demand of the form 

( ) ppf 1.0100 −=λ ; core customers arrive at an average rate of 8 per month and the production 

system can complete 10 jobs per month on average.  The firm imposes an expected waiting time 

constraint for core customers of one month.   

 

 If the waiting time constraint is non-binding, the first-order condition for *p  is a 

quadratic equation with only one feasible solution: 33.768$* ≅p .  This price results in an arrival 

rate for fill-in jobs of 23.17 jobs per month.  The resultant waiting time is found to be 

approximately 0.57 months, which leads to a non-binding waiting time constraint, as initially 

assumed.  The probability that this system is idle is approximately 0.0603, and thus the expected 

additional revenue due to the fill-in jobs is approximately $1073 per month.  It is interesting to 

note that the expected performance of this relatively simple form of state-dependent pricing 

exceeds that of state-independent pricing by approximately 8.4% in this example.  (As discussed 

in Section 4 below, this policy does not always outperform simple state-independent pricing.)  

The chief benefit of this policy is its relative simplicity: managers can easily determine if the 

factory is idle and communicate that fact to marketing personnel who are evaluating potential 

fill-in customers.   

 

3.4.  Model 3: State-Dependent Pricing – Constant Price Up To Cutoff State 

 Here we study a pricing scheme in which fill-in job arrivals are allowed only if the 

system is in a relatively uncongested set of states and all fill-in arrivals are charged a uniform 

price.  Such a scheme is simpler to implement in practice than general state-dependent pricing 

(discussed in the next subsection), since it entails only a check to see if the factory is congested 

or not, e.g., by examining the number of outstanding orders.  If the factory is too busy, the work 

is turned away.  Otherwise, the work is accepted at a standard price for fill-in jobs.  This policy 

generalizes Model 2 by endogenizing the cut-off state for admitting jobs.  We denote the cutoff 

state as s , meaning that new fill-in work is accepted if there are s  or fewer total jobs in the 

system.  Note that the cutoff state, s , is a second decision variable, along with price, p.  (We 

note that a simplified version of this model that relies upon only s  as a decision variable could 
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prove useful in situations where the firm must operate as a price-taker.)  Lemma 2 below 

presents the properties of such a queueing system. 

 

Lemma 2.  Acceptance Up To Cutoff State – Properties.  For the Markov chain described 

above, we have: 

(a) The steady-state probability that the system is in state s  or lower, denoted by ( )sF , is: 
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(b)  The expected waiting time in the system for core arrivals is given by: 
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It is straight-forward to show that cf WW ≤  here, so the waiting time constraint for core arrivals 

is also an upper bound on expected waiting time for fill-in jobs.  The problem faced by the firm 

in this case is to maximize the revenue from fill-in customers: 

( ) ( ){ }ppsF f
sp

λ
,

max  (7) 

subject to: 

 00 ≤−WWc . 
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Note that the firm potentially collects revenue from fill-in customers only when the production 

system is in states 0 through s , as captured by the factor ( )sF  in (7).  Theorem 3 summarizes 

the solution for problem (7). 

 

Theorem 3.  Acceptance Up To Cutoff – Solution.   

(a)  For problem (7), we have the following two cases: 

Case 1: 0=β , *s  is infinite, and the optimal price *p  satisfies ( )( ) ( ) 0' *** =+ ppp ff λλ ; 

Case 2: 0≠β  and the optimal price *p , *s  and β  satisfy: 

 ( )
( )

( )
( ) ( ) 0

1

' *** =+



















∂
∂

−
∂








 −∂
Π− p

W

sF

sF

sF

pp f
f

c

f
f λ

λ
β

λ
λ , where ( ) ( ) ** ppsF fλ=Π ; 

*s  satisfies: 

 
( ) ( )
( ) ( ) ( )ppsWsW

sFsF

fcc λ
β≤

−+
−+

**

**

1

1
 and 

( ) ( )
( ) ( ) ( )ppsWsW

sFsF

fcc λ
β≥

−−
−−

1

1
**

**

;  

and 

 0WWc = . 

(b) For linear demand, there exists a unique optimal value of p  for each s , denoted ( )sp* . 

 

We have not demonstrated that problem (7) is jointly quasi-concave in p  and s , although we 

have demonstrated that ( )sp*  is unique.  The problem thus reduces to a one-dimensional search 

over possible positive integer values of s .  Further, in all of our numerical studies, the reduced 

problem in ( )sp*  and s  was found to be quasi-concave in s .    

Of note in Theorem 3 is that for a non-binding waiting time constraint, it is optimal to use 

state-independent pricing for fill-in jobs.  From a managerial standpoint, if the factory is very 

lightly loaded or customers are relatively insensitive to delays, it is best to ignore the state of the 

factory in deciding which jobs to accept – only price should be used to discourage or encourage 

customers.   
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 Also of note are the two “opportunity costs” that arise in the first-order condition for the 

optimal price.  Both of these costs are similar to the case where fill-in orders are admitted only 

when idle (see Theorem 2).  Note that admitting fill-in jobs only when idle corresponds to 0=s  

in this case.  The term which incorporates the waiting time constraint, ( ) f

cW

sF λ
β

∂
∂

, has the same 

form and interpretation as for Theorem 2.  The term 
( )( ) ( )( )

f

sFsF

λ∂
−∂Π 1

 is also similar in form 

to the result of Theorem 2, except that ( )sF  replaces 0π .  Here, Π  again represents the optimal 

expected return per unit time from fill-in jobs.  The expression ( )( ) ( )sFsF−1  gives the relative 

odds that the production system is in a state in which no fill-in arrivals are accepted.  The change 

in these relative odds multiplied by the optimal revenue from fill-in jobs provides a measure of 

the opportunity cost of accepting another job, i.e., it captures the long-term consequences of the 

decision.  In other words, if the change in relative odds is high when the fill-in arrival rate 

increases by one unit, then the opportunity cost of accepting a job is high.  This implies that the 

manager should charge a relatively higher price for fill-in jobs in such a setting.   A numerical 

example is presented below. 

 

Example 3.  Again, we assume fill-in customers exhibit demand of the form 

( ) ppf 1.0100 −=λ ; core customers again arrive at an average rate of 8 per month and the 

production system can complete 10 jobs per month on average.  The firm imposes an expected 

waiting time constraint for core customers of one month.   

  

 We know from Example 1 that 0≠β , and thus the waiting time constraint must be 

binding.  Optimizing using ExcelTM SolverTM yields 6* =s  (i.e., fill-in jobs are admitted when 

there are six or fewer jobs currently in the system) and 82.936$* ≅p , which equates to 

32.6≅fλ  fill-in jobs per month.  The optimal expected profit per month from fill-in jobs is 

approximately $1767.    

 Note that, for the above example, this policy yields a significant improvement in 

expected profitability over the policy of admitting fill-in jobs only when idle – the gain is 

approximately 65%!  (The gain is 78.5% in comparison to the state-independent pricing policy.)  
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However, this policy is slightly more complicated to implement in practice, for it requires 

knowledge of the factory state, beyond simply knowing whether the factory is idle.  But the gains 

are remarkable.  The typical request from Marketing is to take every job, whereas the response 

from Manufacturing is often “we are too busy.”  This example helps determine what “busy” 

means, and it illustrates the potential gains from optimally choosing the cut-off state and the 

price jointly. 

 

3.5.  Model 4: General State-Dependent Pricing  

 In this subsection we study a general state-dependent pricing scheme in which price may 

be changed dynamically without constraint, i.e., fill-in job arrivals at time t are charged a price 

that is a function of the congestion levels in time t.  Of course, such a scheme entails tracking the 

status of the production process carefully so that accurate prices can be specified.  We use fiλ  to 

represent the fill-in arrival rate when there are i  customers in the system.  Lemma 3 below 

presents the properties for such a queueing system. 

 

Lemma 3.  General State-Dependent Pricing – Properties.  For the Markov chain described 

above, we have: 

(a) The steady-state probability that the system is in state i , denoted by iπ , is given by: 
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(b)  The expected waiting time in the system for core arrivals is given by: 
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The objective of the firm in this case is to maximize the expected revenue per unit time from fill-

in customers: 

( )







∑
∞

=0
,...,, 210

max
j

jjfjj
ppp

ppλπ  (8) 

subject to: 

 00 ≤−WWc . 

Note that in this setting we are searching for an infinite-dimensional vector of optimal prices.  

Theorem 4 below summarizes the solution for problem (8). 

 

Theorem 4.  General State-Dependent Pricing – Solution.   

(a)  For problem (8), we have the following two cases: 

Case 1: 0=β  and the optimal prices *
jp  satisfy ( )( ) ( ) 0' *** =+ jfjjjfj ppp λλ  for all j ; 

Case 2: 0≠β and the optimal prices *
ip  satisfy: 
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for all i , where 

 ( )∑
∞

=

=Π
0

**

j
jjfjj ppλπ ; 

and 

 0WWc = . 

(b)  For linear demand, the first-order conditions are sufficient for optimality for 0=β . 

 

Given the complexity of this problem, we have not established conditions under which the first-

order conditions are sufficient for optimality when 0≠β .  For the case 0≠β , it is simple to 

show that only a finite number of states will exhibit a non-zero arrival rate under linear demand, 
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which simplifies the search for a solution.  Under these same conditions, the prices (and arrival 

rates) will be monotone in the state (see Theorem 5 below).  In our experience with numerical 

examples, we found no instances in which local optima were not global.   

 Of note in Theorem 4 is that, just as for Theorem 3, if the waiting time constraint is non-

binding, it is optimal to use a single state-independent price for all fill-in jobs.  In other words, if 

customers are not sensitive to delays or if there is significant unused capacity in the factory, a 

“set and forget” approach is optimal, i.e., a single uniform price is set and factory status is 

ignored.  As a result, implementation is much simpler for lightly loaded systems than for heavily 

loaded systems.  

 For the case where the waiting time constraint is binding, we have an infinite series of 

terms included within the first order conditions that represent the “costs” of an additional arrival.  

Not surprisingly, these costs bear a resemblance to similar costs that appear in Theorems 2 and 3.  

Each term in this infinite series tabulates the impact of an additional arrival in the state under 

consideration upon all “larger” states.  The first of these terms is: 

 ( ) ( )
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The expression ( ) 111, +++−Π iiif ppλ  measures the difference between the optimal revenue per unit 

time and the revenue per unit time when in state 1+i .  The term 

 






 −+
cW

i

µ
β 2

 (10) 

measures the difference between the expected waiting time in the system for a core customer 

arrival when the system is in state 1+i  (note that this is just the expected time to service the 

existing 1+i  customers plus the newly arrived customer) and the overall expected wait in the 

system for core customers, given by cW .  The Lagrange multiplier β  is multiplied by this 

difference to yield a “relative” cost of the waiting time constraint when in state 1+i .  Note that 

this cost can be negative when i  is small.  The factor  

 
( )

fi

ii

λ
ππ

∂
∂ +1  (11) 

represents the change in the relative odds of occupying state 1+i  due to an increase in the arrival 

rate in state i .  Similar interpretations can be applied to subsequent terms in the series. 
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 Theorem 5 below demonstrates that the set of optimal prices for problem (8) are 

monotone in the state. 

   

Theorem 5.  General State-Dependent Pricing – Monotonicity.  Under linear demand, the 

solutions to problem (8) satisfy *
1

*
+≤ ii pp  for all i . 

 

This monotonicity result supports our intuition; as a production system becomes more congested, 

a higher price should be charged for fill-in jobs because of the greater strain that they put on the 

system.  Using the result of Theorem 5, it is straightforward to show that cf WW ≤ , so as with the 

previous policies considered, the waiting time constraint for core arrivals is also an upper bound 

on expected waiting time for fill-in jobs.   

 A numerical example illustrating this policy is presented below.  The basic setting is the 

same as prior examples. 

 

Example 4.  Following Examples 1-3, fill-in customers exhibit demand of the form 

( ) ppf 1.0100 −=λ ; core customers arrive at an average rate of 8 per month and the production 

system can complete 10 jobs per month on average.  The firm imposes an expected waiting time 

constraint of one month for all customers.   

  

 We know from Example 1 that 0≠β , and thus the waiting time constraint must be 

binding.  Optimization using ExcelTM SolverTM yields the results shown in Table 1 below.  The 

progression of prices and arrival rates shown in Table 1 confirms our intuition about these 

relationships, namely that as the system becomes more congested, a higher price is charged for 

fill-in arrivals and demand is curtailed.  The optimal expected profit per month from fill-in jobs 

is approximately $1840.  It is notable that the improvement relative to the “uniform price up to a 

cut-off point” policy (from Example 3) is only about 4.1%.  This gain comes at the cost of 

significant additional monitoring of factory status required in order to inform the price choice for 

this general state-dependent pricing scheme.  Without sophisticated tracking software, most 

managers do not have access to the information required to implement this scheme.  It is thus 

encouraging that the incremental gain is quite small.   
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INSERT TABLE 1 ABOUT HERE 

 

4.  POLICY COMPARISON 

 

 Figure 1 provides a comparison of the optimal fill-in job arrival rates under each of the 

four examples discussed in Section 3, plotted with respect to system state, i.e., the number of 

jobs in queue plus any being served.  Clearly the state-independent or static policy yields a 

conservative approach to fill-in customers; a relatively low arrival rate is maintained to 

compensate for lack of state information.  The policy of admitting fill-in work only when idle 

yields a contrasting approach.  In this example, the waiting time constraint on core jobs is non-

binding, so the constraint of interest is that created by the choice of policy.  The result is that a 

relatively high arrival rate is maintained in the sole state in which we are allowing jobs to be 

admitted in order that this condition can be exploited.  The policy of admitting at a uniform price 

up to a cut-off state yields, in this example, an intermediate level of arrivals in those states where 

arrivals are allowed.  Lastly, the uniform state-dependent policy yields a set of arrival rates 

which bracket those of the prior policy, taking better advantage of opportunities when the system 

is relatively idle and better recognizing the costs of additional arrivals when the system is 

relatively congested.  While the “uniform up to a cut-off” and “general state dependent pricing” 

policies look quite different from this perspective, it is notable that their relative financial 

performance is much less divergent.  This result was discussed in Section 3 for this particular 

numerical example and is explored in more depth in this section.   

 

INSERT FIGURE 1 ABOUT HERE 

 

 In the remainder of this section, we expand our set of numerical examples to study policy 

performance under a broad range of conditions.  Expanding on Examples 1-4, we vary two basic 

model characteristics:  (1) the system utilization due to core (long-term) customers, denoted by 

cρ , where µλρ cc = , which we vary between 0 and 0.9 (0.9 is the point at which the waiting 

time constraint is binding and no additional arrivals are feasible); and (2) the form of the demand 

function for fill-in customers, which takes on two forms representing either a relatively “large” 
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market or a relatively “small” market.  The large market demand function has the same form as 

in the Section 3 examples: ( ) ppf 1.0100 −=λ .  The small market demand function has one tenth 

the magnitude: ( ) ppf 01.010 −=λ . 

 Figure 2 is a plot of the optimal expected profit earned from fill-in jobs as a function of 

the system utilization due to core jobs.  These solutions correspond to the “large” market demand 

function.  The revenue-maximizing demand for this demand function, ignoring the operational 

details of the problem, is 50* =fλ  jobs per month.  This would clearly overwhelm the productive 

capacity of the firm in these examples (recall 10=µ  jobs per month), and explains why we refer 

to this as a “large” market demand function.  As mentioned above, when core job utilization is 

0.9, the waiting time constraint is binding and fill-in arrivals are not feasible, as revealed in 

Figure 2.  Figure 2 also shows that general state-dependent pricing sets a performance frontier 

that encompasses the other policies.  Of course, the feasible set of general state-dependent 

pricing solutions is a superset of the feasible solutions under each of the other policies, and 

therefore the solution must be at least as good as any of the others.   

 An interesting aspect of Figure 2 is the relatively poor performance of the policy of 

admitting jobs only when the system is idle.  At 8.0=cρ , this policy outperforms state-

independent pricing by 8.3%, but for all lower plotted levels of cρ , this policy is dominated by 

state-independent pricing.  The explanation for this effect is that admitting jobs only when idle 

gets costly for a lightly loaded system; such a policy does not allow any queueing of fill-in jobs, 

which can result in unnecessary idle time.  Conversely, for heavily loaded systems, admitting 

jobs only when idle does relatively well compared to a state-independent policy because in such 

a case it becomes important to account for externality effects, i.e., the impact of an accepted fill-

in job on the delay of the core jobs. 

 

INSERT FIGURE 2 ABOUT HERE 

 

Figure 2 also reveals that the relative value of using internal system state information to 

make job pricing and acceptance decisions increases as cρ  increases.  Figure 3 provides more 

detail by presenting a plot of the relative gain that results from a full state-dependent pricing 
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policy vs. a state-independent policy for a range of values of cρ .  For 0=cρ , the relative gain 

from a full state-dependent policy is only 8.6%, whereas for 895.0=cρ , the relative gain is 

812%.  Of course, as can be seen in Figure 2, the absolute return earned under either policy 

declines as cρ  increases.  The large relative gain results because the performance gap between 

the policies remains significant even as the absolute gains decline. 

While the relative gains from full state-dependent pricing can be tremendous, the costs of 

using a policy of uniform pricing up to a cut-off state instead of full state-dependent pricing are 

much more moderate.  Figure 4 plots the relative gain of uniform pricing up to a cut-off vs. a 

state-independent policy.  The curve is very similar to that of Figure 3 for general state-

dependent pricing.  Among the solutions plotted in Figures 3 and 4, the maximum performance 

improvement that general state-dependent pricing yields relative to uniform pricing up to a cut-

off point is 13.8% at 89.0=cρ , and the gain is only 3-6% over most of the range of cρ  (the 

difference in relative performance is not monotone in cρ , which can be explained by the integer 

constraint imposed on the cut-off state s ).  These gains are quite modest when compared to the 

value of using internal state information, i.e., the gains from implementing a state-dependent 

pricing policy vs. a state-independent policy. 

 

INSERT FIGURE 3 ABOUT HERE 

INSERT FIGURE 4 ABOUT HERE 

 

Figure 5 illustrates the results of a numerical analysis that is identical to that plotted in 

Figure 2, except that the demand function for fill-in arrivals has the form ( ) ppf 01.010 −=λ .  

We refer to this as a “small” market demand function because the revenue maximizing arrival 

rate, ignoring all operational details, is 5* =fλ , which is a feasible arrival rate with 10=µ .  In 

fact, this is the solution depicted in Figure 5 for three of the policies when 4.0≤cρ .  For these 

cases, the waiting time constraint is non-binding and the optimal solution for the policies of 

uniform pricing up to a cut-off state and general state-dependent pricing both collapse to the 

state-independent pricing solution, as described in Theorems 3 and 4.  As cρ  increases, the 
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waiting time constraint becomes binding and these two state-dependent policies begin to differ 

from and outperform state-independent pricing.   

 

INSERT FIGURE 5 ABOUT HERE 

 

Figure 6 presents the relative gains from general state dependent pricing vs. state-

independent pricing, and Figure 7 presents the relative gains from uniform pricing up to a cut-off 

state vs. state-independent pricing.  These plots are analogues of Figures 3 and 4 for the small 

market case.  Figure 6 reveals that the relative value of state information increases dramatically 

as the system becomes more congested.  Figure 7 again supports the idea that the relative gains 

from full-state dependent pricing vs. uniform pricing up to a cutoff are limited – here the 

maximum gain is 6.9% at 88.0=cρ .  

 

INSERT FIGURE 6 ABOUT HERE 

INSERT FIGURE 7 ABOUT HERE 

 

Although our numerical analysis cannot serve as proof of any normative statements 

regarding these four policies, they do provide some important insights.  In all cases, a policy of 

uniform pricing up to a cut-off state performs quite well versus full state-dependent pricing.  This 

is particularly noteworthy for a number of reasons:  (1) it requires less detailed information about 

the state of the system, i.e., management only needs to know whether the factory is “too busy to 

accept fill-in work” or not;  (2) the uniform pricing policy is much easier to compute and 

communicate to relevant managers; and (3) a uniform pricing policy is less likely to cause 

dissonance among customers who experience widely varying prices that result from a process 

over which they have no control.  Another observation that follows from our analysis is that the 

relative value of using information about factory status increases dramatically as the factory 

becomes more congested.  This result is not surprising, but the relative magnitude of the effect 

can be huge, ranging up to 812% as noted above.  

 An analytic result that lends some support to the numerical results of this section is 

provided via the concept of entropy from the field of information theory.  Entropy is a measure 

of uncertainty in a probabilistic system, i.e., it is a measure of the complexity required to 
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describe a random variable, and serves as an indicator of the minimum complexity of the system 

required to produce instances of a given random variable.  (See, for example, Cover and Thomas 

(1991) for a discussion of entropy).  Entropy is formally defined for a positive, discrete random 

variable as: 

 ( )∑
∞

=

−=
0

2log
i

ii ppH ,      

where the result is measured in “bits” when the logarithm is taken as base 2, as here.  It is well 

known that the steady-state state distribution for the M/M/1 queue follows a geometric 

distribution (see, for example, Gross & Harris (1985)).  This result can be used to calculate the 

entropy associated with the state distribution for an M/M/1 queue: 

 ( ) ( )ρ
ρ

ρρ 22 log
1

1log
−

−−−=H , 

where ρ  is the system utilization.  When 0=ρ , we have 0=H  bits (we define ( ) 00log0 ≡ ).  

In other words, if the system is always idle, there is no uncertainty in its state.  When 5.0=ρ , 

we have 2=H  bits and when  85.0=ρ , we have 4≅H  bits.  Further, it can be shown that 

∞=
→

H
1

lim
ρ

 for the M/M/1 queue.  Figure 8 plots the system state entropy as a function of system 

utilization.  Clearly, system entropy increases in system utilization.  Therefore, more information 

is revealed from observing the state of a highly utilized system than would be revealed by 

observing a less highly utilized production system.  Hence, there is substantive information 

revealed when observing the system state when the utilization is high.  This is precisely the 

reason why we observe increasing relative gains with state-dependent pricing versus a state-

independent pricing as core customer utilization increases (see Figures 3, 4, 6 and 7).  The shape 

of the curve in Figure 8 closely resembles that of Figures 3, 4, 6, and 7, all of which measure the 

impact of state knowledge in terms of relative financial return (and which reflect queueing 

systems that depart somewhat from the assumptions of an M/M/1 system).  Figure 8 reveals that 

there is an underlying concept of the information content of state information that closely 

parallels the value of that information revealed in our numerical examples.  This analytic result 

also provides some assurance that the results of our set of numerical examples are somewhat 

general in nature. 
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INSERT FIGURE 8 ABOUT HERE 

  

The interpretation of entropy as a measure of the complexity of the system required to 

generate a random variable can also provide some insights into the performance of the four 

pricing policies considered in this paper (see, for example, Cover and Thomas (1991) for an 

explanation of Kolmogorov complexity).  Each of these policies (except static pricing as in 

Model 1) requires a signal from the factory floor in order to establish the current price for fill-in 

work.  The entropy associated with these signals is a measure of the minimum complexity of the 

systems required to generate these signals, which should correlate with the relative difficulty of 

implementing such a system on the factory floor.   

We can revisit the examples of Section 3 and use this notion of complexity to evaluate 

the performance/complexity tradeoff for the policies we consider.  In the examples of Section 3, 

state-independent pricing requires no information about factory status to quote a price.  

Admitting only when idle requires 0.329 bits of information per factory status inquiry on 

average, uniform price up to a cutoff state requires 0.880 bits, and general state-dependent 

pricing requires 4.172 bits.  (These figures can be calculated from the state probabilities that are 

relevant to the decision; in the case of admitting only when idle, we need only be concerned with 

the states “idle” and “busy,” which are occupied with probabilities 0.060 and 0.940, 

respectively.)  These entropy values can be used to calculate a “return per bit” from each of the 

three dynamic policies.  Table 2 summarizes the results of this calculation for the examples of 

Section 3.  Here again, we see evidence that the policy of uniform pricing up to a cutoff state 

deserves attention:  it far outperforms the other policies on this metric.  We’ve demonstrated 

previously that this policy performs nearly as well as general state-dependent pricing in a variety 

of numerical studies.  Here see that this performance is coupled with a relatively low measure of 

policy complexity, indicating that policy is likely to be relatively easy to implement. 

 

INSERT TABLE 2 ABOUT HERE 

 

5.  CONCLUSIONS AND FUTURE RESEARCH 
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The objectives of this paper are twofold.  First, although there has been much research in the 

area of dynamic pricing, very few papers have integrated supply chain issues with pricing 

policies.  This paper contributes to the literature that attempts to fill this gap.  Second, the papers 

that do integrate supply chain issues with pricing policies generally focus on inventory levels.  

Little is known, however, with respect to how pricing policies and the supply chain dynamically 

interact in make-to-order scenarios.  Our work sheds some light on these issues.  In particular, 

we combine the study of two types of customers in a natural way.  Long-term, or core, customers 

face state-independent pricing and a constraint on expected order delay, consistent with typical 

long-term contractual arrangements.  Much more flexibility is generally allowed in choosing 

pricing policies for short-term, or fill-in, customers, and this choice forms the core of this paper. 

We introduced four models of the interaction of pricing and the factory status for fill-in 

customers, including (1) ignoring queue length and setting a single, constant price for fill-ins, (2) 

admitting fill-ins only when the system is idle and setting a price accordingly, (3) admitting fill-

ins up to a system state of s  under a uniform price, and (4) setting a different price for each 

possible state of the system.  Models 1 through 3 considered policies in which constraints are 

placed on the extent to which state information is utilized in making pricing decisions.  We find 

the optimal prices analytically for each model, and for model (3) we also find the optimal cut-off 

state, *s .  We also analytically illustrate insights and properties common to the four models, 

taking into consideration (a) the waiting time constraint for the core customers and (b) the 

opportunity cost of taking up an additional fill-in order.  Finally, we illustrate the behavior of the 

models using numerical analyses, which highlight new insights.   

Clearly, the policy that requires the least information from production is state-

independent pricing.  One would expect, therefore, that any policy which employs some 

information about queue status would show higher profitability.  This is not necessarily true, 

however.  For instance, a policy that admits fill-ins only when the system is idle can perform 

much worse than state-independent pricing when system utilization is relatively low.  In other 

words, using only information about the factory being idle can actually be worse than using no 

factory status information at all.  

Perhaps the most striking, and encouraging, result is that a policy that admits fill-in 

customers at a constant price up to a cut-off state of s , where both s  and price are set optimally, 

can dramatically outperform a state-independent policy – yielding an almost 80% gain in the 
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example of Section 3.  Using queue information in this case is likely well worth the effort.  

Further, the increase in profit achievable from setting a different optimal price for each possible 

state of the production system, relative to the policy of a uniform price up to a cut-off state, is 

fairly small – about 4% in the same example cited above.  This result suggests that while 

managers can improve profit markedly by using information about the status of the factory, a 

fairly simple pricing policy that requires limited information gathering can perform extremely 

well.  Our results on policy complexity in Section 5 provide evidence that the policy of uniform 

pricing up to a cutoff state is superior according to a performance/complexity ratio measure. 

The general state-dependent pricing strategy, where the price for a fill-in order arriving at 

time t  is dependent on the state of the system at time t , is the most dynamic of the four policies 

we consider.  Given the stochastic arrivals of core and fill-in customers, none of the customer 

groups can ex-ante predict what the state of the system will be.  Although there may be some 

concern that such a dynamic pricing policy may turn away potential customers, we argue that 

existence of such fully state-dependent pricing policies may actually motivate some fill-in 

customers to become core customers.  A parallel picture in the grocery industry is the emergence 

of loyalty cards where “loyal” (or long-term) customers are promised better deals than “walk-in” 

customers who have to pay the price they face during that week.  In fact, it appears that 

supermarket chains are thus effectively competing with big discounters such as WalMart via 

using such customer loyalty programs and thus increasing their overall profitability (Patton 

2002).  

This research presents many opportunities for future work.  For example, one could 

endogenize the price charged to core customers and optimally select both that price and fill-in 

prices.  Furthermore, future research could endogenize the waiting time constraint as well.  

Additional future research could examine the impact of strategic competition on the pricing and 

waiting time policies for core and fill-in customers.  Another opportunity exists in estimating 

actual demand functions for core and fill-in customers in a business-to-business setting and 

developing the corresponding optimal policies.  Such an analysis would be more amenable to 

comparative statics as well.  It is our hope that this research stimulates further interest in the 

integration of pricing and supply chain performance. 
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APPENDIX – PROOFS 

 

Proof of Theorem 1.  

(a)  Part (a) follows directly from differentiating the Lagrangean for this problem. 

(b) Sufficient conditions here follow from the Karush-Kuhn-Tucker sufficient conditions, i.e., 

( )ppfλ  must be concave and 0WWc −  must be convex.  For linear demand, the former follows 

immediately.  The later condition can be reduced to the condition 0
2

2

≥
∂
∂

f

cW

λ
, which can be easily 

verified.  ♦  

 

Proof of Lemma 1.  

(a) From the balance equations for this Markov chain, it is straightforward to establish that 

0

1

π
µ

λλ
µ
λπ 







 +







=
−

fc
n

c
n .  Solving for 0π  yields the result. 

(b)  Since core customer arrivals occur with a uniform rate in every system state, we can 

compute their expected wait as: 

 ∑
∞

=

+=
0

1

i
ic

i
W

µ
π  . 

The result follows from this and the results of part (a).  ♦  

 

Proof of Theorem 2.  

(a) Part (a) follows directly from differentiating the Lagrangean for this problem. 

(b) Here, we proceed by establishing that the Lagrangean (denoted by L ) is quasi-concave.  For 

this problem we have: 

 ( ) ( )00 WWppL cf −−= βλπ . 

First, consider the case where: 

 0

1
W

c

=
−λµ

. 

In this case, the only feasible choice of p  is maxp , where ( ) 0max =pfλ .  The remainder of this 

proof considers the case  
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 0

1
W

c

<
−λµ

. (A1) 

Substituting in the results of Lemma 1 and differentiating yields: 

 ( )( ) ( ) ( ) ( )( ) ( ) ( ) 












 +++








−

+−
+

−
=

∂
∂

ppppppp
pp

L
fff

c
ff

f

c λλλµ
λµ

βλλ
λµ

λµ ''
2

. 

We proceed by investigating the behavior of this partial derivative.  First, we look at extreme 

values of 0=p  and maxpp =  where maxp  is defined by ( ) 0max =pfλ  

 ( )( ) ( ) ( )( ) ( )( ) 0000'
0 2
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The result at maxpp =  follows from (A1):  the waiting constraint cannot be binding at maxp  and 

thus 0=β .   

 Since ( )( ) 0
2

>
+

−
pf

c

λµ
λµ

 holds by assumption on exogenous values, the roots and sign of 

p

L

∂
∂

 are identical to the roots of ( )pr , where: 

   ( ) ( ) ( ) ( )( ) ( ) ( )




 +++




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


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+−= ppppppppr fff
c

ff λλλµ
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βλλ '' . 

Now, under the assumption of linear demand, we have: 

 ( ) ( )( ) ( ) 0'2' <+= pppr ff λλµ , 

and thus ( )pr  has a single root and L  is quasi-concave.  ♦  

 

Proof of Lemma 2.  

(a)  From the balance equations for this Markov chain, it is straightforward to establish that 
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The result follows from solving for 0π  and summing 0π  through sπ . 

(b)  Since core customer arrivals occur with a uniform rate in every system state, we can 

compute their expected wait as: 

 ∑
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=
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i
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i
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µ
π  . 

The result follows from this and the results of part (a).  ♦  

 

Proof of Theorem 3.  

The Lagrangean (denoted by L ) for this problem is: 

 ( ) ( ) ( )( )0,, WpsWpppsFL cf −−= βλ . 

(a) If 0=β , we have: 

 ( ) ( )pppsFL fλ,= , 

and we can form the first-difference with respect to s : 

 ( ) ( ) ( )( )psFpsFppf ,,1 −+λ . 

This difference is not automatically positive because F  is a distribution, because ( )1+sF  and 

( )sF  are different distribution functions.  However, it can be shown that: 

 ( ) ( ) ( ) ( )

( )
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




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





 +

+=−+

µ
λ

µ
λλ

ππ
c

fc p
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1,,1 00 , 

which is unambiguously positive, and therefore *s  is unbounded, the Lagrangean reduces to 

( )ppL fλ=  and the result follows immediately.  The first order conditions for the second case 

follow by differentiating the Lagrangean with respect to p  and forming the first difference with 

respect to s .  
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(b)  If 0≠β , then the waiting time constraint is binding and we have 0WWc = .  To show that 

there exists an optimal, unique p  for each value of s  we need only to demonstrate that the 

equation 0WWc =  yields a unique ( )sp* , which can be done by showing that cW  is strictly 

increasing in fλ .  While intuitively clear, this result can be demonstrated easily by showing that 

increasing fλ  results in a stationary distribution that exhibits first-order stochastic dominance 

and thus larger expected values of waiting time.  ♦  

 

Proof of Lemma 3.  

(a)  Follows using same logic as proof of Lemma 2.  ♦  

 

Proof of Theorem 4.  

 (a) If 0=β  the waiting time constraint can be ignored and we need only focus on maximizing 

the expected revenue earned per unit time.  If the system is in state i , then the firm will earn 

nothing during the next state transition with probability ( ) µλλ
µλ

++
+

cifi

c

p
 and will earn ip  with 

probability 
( )

( ) µλλ
λ

++ cifi

ifi

p

p
, for an expected earning of 

( )
( ) µλλ
λ

++ cifi

iifi

p

pp
.  The rate at which 

state transitions are occurring is ( ) µλλ ++ cifi p , and thus we expect an earning rate of 

( ) iifi ppλ .  Since this same logic can be applied to every state, we conclude by symmetry that the 

optimal price for every state satisfies ( )( ) ( ) 0' *** =+ jfjjjfj ppp λλ . 

For 0≠β ,  we begin with the Lagrangean (denoted by L ) for this problem: 

 ( ) ( )0
0

WWppL c
i

iifii −−=∑
∞

=
βλπ . 

Differentiating and collecting terms yields the set of first order conditions provided. 

(b)  For 0=β  the result follows immediately.  ♦  

Proof of Theorem 5.  
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(a)  We denote the smallest price under which demand is zero as maxp .  If 0=β  all prices are 

equal from Theorem 4 and the result follows immediately.  For 0≠β , we note that the first-

order conditions from part (a) are all of the form: 

 ( )[ ] ( ) 0' *** =+− ifiiiifi pXpp λλ , 

where iX  is given by: 
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By inspection of the form of iX , it is clear that for any 0>β , ∞=
∞→ i

i
Xlim  for any allowed 

values of the decision variables.  It is also straightforward to show that 
2

1*

=
∂
∂

i

i

X

p
 under linear 

demand, and thus ip  is increasing in iX .  We employ backwards recursion to prove the 

monotonicity result.  First, note that we can form the following recursion for the iX ’s: 
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Begin by assuming 01 ≥− −ii XX .  Now, examine 21 −− − ii XX : 
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Now, we can rewrite 01 ≥− −ii XX  as: 
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Since, 01 ≥− −ii XX  by assumption, we have ( )( ) ( )( )1
*

1
*

11,
**

, −−−− −≤− iiiifiiiif XppXpp λλ  by the 

envelope theorem, and thus 021 ≥− −− ii XX .  We have not shown a base case for this recursion, 

but from these results we can conclude that the iX ’s are unimodal.  Since we have ∞=
∞→ i

i
Xlim , 

either all iX ’s are infinite or the iX ’s are increasing.  It follows that  *
1

*
+≤ ii pp  for all i .  ♦  
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State i  *
ip  ( )*

ifi pλ  

0 760.73 23.93 
1 856.12 14.39 
2 902.82 9.72 
3 930.55 6.94 
4 949.22 5.08 
5 962.99 3.70 
6 973.94 2.61 
7 983.11 1.69 
8 991.39 0.86 
9 999.27 0.07 

10 and higher 1000 0 
 

Table 1.  Results for General State-Dependent Pricing Example. 

 
 
 

 

 
Figure 1.  Mean Fill-in Arrival Rate as a Function of the System State. 
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Figure 2.  Numerical Examples for Large Market Demand Function 
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Figure 3.  Relative Gain From Using Internal State Information Relative to State Independent 

Pricing (Large Market). 
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Figure 4.  Relative Gain From Uniform Price up to Cut-off Policy vs. State-Independent Pricing 

(Large Market). 
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Figure 5.  Numerical Examples for Small Market Demand Function 

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8

Core Customer Utilization

E
xp

ec
te

d
 P

ro
fi

t 
fr

o
m

 "
F

il
l-

In
s"

 (
$/

m
o

n
th

).

State-Independent
Admit When Idle
Uniform up to Cut-Off
General State-Dependent



 45 

 
 
 

 
Figure 6.  Relative Gain From Using Internal State Information (Small Market). 
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Figure 7.  Relative Gain From Uniform Price up to Cut-off Policy vs. State-Independent Pricing 

(Small Market) 
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Figure 8.  M/M/1 State Entropy vs. Utilization. 

 

 

 

 

 

Policy: 
State- 

Independent 
Admit 

When Idle 
Uniform up to 

Cutoff 
General State-

Dependent 
Expected Gain From “Fill-

Ins” ($/month) 
990 1073 1767 1840 

Entropy of Pricing Signal 
(bits) 

0 0.329 0.880 4.172 

Additional Return per Bit 
($/bit) 

- 252 883 204 

 

Table 2.  Calculation of “Return per Bit.” 

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

Utilization (rho)

E
n

tr
o

p
y 

(b
it

s)


