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Global Competitors as Next-Door Neighbors:  

Competition and Geographic Co-location in the Semiconductor Industry  

 

ABSTRACT 

 

Despite the many advantages offered by technology clusters, firms located in them 

face the risk of losing valuable knowledge to nearby competitors. In this study, we argue 

that multi-location firms strategically organize their R&D activities to appropriate the value 

of innovations generated in clusters, mainly through three mechanisms: technological 

distance, value internalization, and control. Empirical analysis of the global semiconductor 

industry provides supportive evidence of such mechanisms. In clusters where direct 

competitors are right next door, leading firms generate innovations that are technologically 

distant from their neighbors, have more internalized value, and involve inventors from 

other geographic locations, particularly from headquarters. Interestingly, the strategies 

seem to be much more sensitive to neighboring firms competing in the same marketplace 

than those sharing the same technological space. The findings offer important insights into 

the interaction between firms’ internal organization and their external environment. 
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1. Introduction 

Technology clusters – geographic concentrations of firms and other institutions engaging in closely 

related R&D activities – are characterized by intensive local knowledge flows across organizational 

boundaries (Porter 2000). Due to the tacit nature of knowledge, effective knowledge transfer often 

requires frequent interpersonal interactions, which are more likely to happen with geographic proximity 

(Jaffe, et al. 1993, Audretsch and Feldman 1996). Technological clusters also facilitate labor mobility, an 

additional mechanism of knowledge flow across organizations.  

Knowledge, however, flows in both directions. Unintended knowledge outflows to competitors can 

erode the competitive advantage held by industry leaders, a potential cost that may overweigh the many 

benefits of clustering. Consequently, previous research suggests that leading firms may choose to locate 

apart from technology clusters, using geographic distance as a strategy to preserve and appropriate value 

from innovation (e.g., Shaver and Flyer 2000). Nevertheless, this approach may be neither desirable nor 

sustainable. Leading firms are often attracted to a technology cluster by some unique advantages the 

location has to offer: proximity to research universities, favorable government policies, abundance of 

human capital, etc. Even when a leading firm decides to locate apart, it has little control over subsequent 

location decisions by competitors. Hence, voluntary or not, co-location with competitors happens, and 

most innovation in technology-driven industries – including that of industry leaders – still occurs 

overwhelmingly in technology clusters.  

What enables the leading firms to benefit from the location-specific advantages without 

compromising their ability to profit from innovation? In this paper, we address this question by 

integrating two important factors in cluster dynamics: geographically dispersed R&D organization at the 

firm level, and the composition of various organizations – competitors or not – at the cluster level.  

At the firm level, large multi-location firms are dynamically mobilizing and integrating knowledge 

on a global basis (Bartlett and Ghoshal 1990). To understand R&D dynamics in a cluster, we recognize 

that an entity in the cluster may well be part of an extended organization, with its multiple locations and 

multiple business lines strategically integrated. The innovation strategy of IBM in Cambridge, 
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Massachusetts, for example, is intricately linked with the company’s eight other R&D labs and hundreds 

of facilities worldwide. 

At the cluster level, previous studies often overlooked the multi-dimensional relationships 

among the local entities (Cohen 1995: p.230). Firms in a technological cluster may share similar 

technological backgrounds or even engage in patent races against each other, but they do not 

necessarily compete in the same product market. Industry-specific market information and other 

complementary resources can significantly reduce the concern over knowledge exchanges, thus 

allowing symbiotic relationships to develop in technology clusters. 

We argue that multi-location firms that face heterogeneous local competitive environments 

can benefit from technology clusters while minimizing potential information leakages through 

three mechanisms. First, a firm may allocate technologies that do not overlap much with those of nearby 

competitors to technology clusters, using technological distance to minimize information leakage. 

Second, a firm may choose to develop technologies in clusters that can be quickly built on by other units 

of the firm, thus reducing imitation incentives of nearby firms. Finally, a firm may simply exert tighter 

control over local R&D by increasing the involvement of researchers from other locations, particularly 

from headquarters. These are all strategies available to geographically dispersed organizations. 

Examining the semiconductor industry from 1998 to 2001, we find supportive evidence at both the 

firm and the location level. When surrounded by direct competitors, the technology leaders in the industry 

are likely to keep a larger technological distance from local entities, develop technologies that are cited 

more internally, and organize more cross-regional collaborations. Moreover, the three mechanisms are 

highly responsive to competition when competition is defined as firms operating in the same product 

market, but are much less visible when competition is defined as firms sharing the same knowledge base. 

The rest of the paper is organized as follows. Literature review and theory development are in the 

next section, followed by the description of data sources and empirical design in Section 3. The empirical 

results and robustness tests are presented in Section 4. Section 5 concludes. 
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2. Firm Strategy and Technological Clusters 

2.1 Appropriability through Geographic Distance 

There has been a revival of interest in the geographic concentration of economic activities (Porter 

2000) and its implications for firms’ strategic location choices (Chung and Alcácer 2002, Baum and 

Sorenson 2003). Starting with the seminal work by Marshall (1920), researches have suggested that firms 

in an industry cluster benefit from inter-firm knowledge spillover, access to specialized labor, and access 

to specialized intermediate inputs. Among the various activities along the value chain, R&D activities 

depend on knowledge spillover the most and thus show the highest level of concentration (Audretsch and 

Feldman 1996, Alcácer 2006). In particular, geographic proximity in technology clusters enables frequent 

interpersonal interactions through existing social networks (Almeida and Kogut 1999) and local 

institutions (Gilson 1999, Stuart and Sorenson 2003), which facilitate the transfer of tacit knowledge.  

However, inter-firm knowledge spillovers may also hinder a firm’s ability to appropriate value 

from its own innovations. For example, in the context of collaborative R&D, Cassiman and Veugelers 

(2002) distinguish incoming spillover, which enhances innovation, from appropriability, the ability to 

generate economic rents from intellectual capital. In the context of strategic alliances, appropriability 

issues are often the cause of concerns for alliance partners (Oxley and Sampson 2004).  

Similar arguments have been raised for firms’ location decisions. Shaver and Flyer (2000) suggest 

that firms not only benefit from the knowledge flows in clusters, but also contribute to them. Thus, firms 

locate apart when the costs of clustering exceed the benefits. Linking knowledge spillover to strategic 

location choices, Alcácer and Chung (2006) suggest that, because knowledge flows in both directions, 

industry leaders may shy away from clusters. Earlier, Yoffie (1993) also notes that semiconductor 

managers avoid locating near competitors for fear of technology spillover to other firms.  

Minimizing knowledge outflow through geographic distance is the common thread in these papers. 

However, some caveats remain, in both theory and empirics. Theoretically, geographic distance may not 

be a sustainable strategy over time. Even if a leading firm decides to locate apart, it has little control over 

the subsequent location decisions of competitors, who may relocate or open new facilities nearby to take 
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advantage of positive externalities. In addition, new firms may emerge as previous employees start up 

new businesses locally (Buenstorf and Klepper 2004). To the extent that industry leaders cannot stop 

other firms from collocating, geographic distance offers only a temporary measure to prevent unintended 

knowledge outflows.  

Empirically, most studies examine individual location choices (i.e., marginal entries), ignoring the 

multiple locations that a firm has already had presence in. Micron Technology, Inc., for example, has 

R&D presence in Silicon Valley, but it also maintains a strong R&D and manufacturing base in Boise, 

Idaho, where it owns over 98% of the locally developed semiconductor patents. That is, firms’ choices at 

one location should be analyzed in combination with the overall organizational structure. Finally, the 

evidence of leading firms locating apart is often industry-dependent. When key inputs, including 

specialized knowledge, are only available in a specific location, even industry leaders flock there. For 

example, Chung and Alcácer (2002) find that even the most technologically advanced foreign firms locate 

next to existing firms in some technology-intensive industries, such as semiconductors and 

pharmaceuticals.  

If staying away is not an option, how do industry leaders manage R&D in technology clusters so 

that they can benefit from the local resources (e.g., human capital, tax incentives and university facilities) 

while still appropriating value from innovation? In the rest of the section, we propose three mechanisms 

that a multi-unit multi-location firm may utilize to maintain its competitive edge: keeping certain 

technological distance from local competitors, developing innovations with high internalized value, and 

maintaining tight control over R&D activities in technology clusters. 

2.2 Appropriability through Technological Distance 

In essence, geographic distance is one of the many modes of strategic differentiation, by which 

firms set themselves apart from rivals to soften competition and obtain higher returns. Other strategies of 

differentiation have been widely discussed in strategy (Porter 1985) as well as organizational theory 

(Baum and Haveman 1997).  For example, in a study of Californian wineries between 1940 and 1984, 
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Swaminathan and Delacroix (1991) find that wineries managed to escape competitive pressure through 

organizational differentiation; those that entered the table wine niche were subject to lower failure rates. 

In clustered areas where geographic distance is small, technological distance – engaging in R&D 

that is technologically differentiated from that conducted by nearby rivals – may serve as an alternative 

mechanism for knowledge protection. For any knowledge spillover to occur, the receiving firm must be 

able to recognize and absorb the specific knowledge. Because organizations tend to search for knowledge 

around their own technological positions (Stuart and Podolny 1996), certain technological distance may 

help the innovating firms to stay off rivals’ radar screen. Moreover, even if the technologies are 

recognized by a rival, the ability to identify, assimilate, and apply new technologies is highly dependent 

on the rival’s prior knowledge (Cohen and Levinthal 1990). Therefore, leading firms may reduce the 

imitation concern by developing technologies that deviate from key competitors’ local R&D portfolios. 

We hypothesize that leading firms are more likely to distance themselves technologically from the local 

competitors as the number of competitors in the cluster increases. 

Furthermore, the level of R&D activity performed by competitors in the cluster may mediate the 

above relationship. For example, a firm may perceive a lower risk of knowledge outflow if competitors 

only conduct limited amount R&D in the cluster. Because a firm’s absorptive capacity depends on its 

previous stock of knowledge and knowledge is locally bounded, a competitor’s ability to receive 

knowledge should be the highest in its core cluster – the cluster where it performs most of its R&D. 

Therefore, we expect to observe larger technological distance in clusters that are core clusters for a 

competitor. 

 Admittedly, managing technological distance comes with costs. First, technological distance may 

also affect a firm’s own absorptive capacities and prevent it from taking full advantage of the local 

knowledge spillover. However, to the extent that the cluster is populated by organizations playing 

different roles along the value chain or belonging to different industries, a firm can still benefit from 

knowledge developed in the cluster while keeping appropriability of its own technologies (Cohen 1995). 

Such clusters, defined by Jacobs (1969) as locations where firms share a broad technological domain but 
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do not compete on the same product markets, extend Marshall’s concept of a cluster to reflect the 

emergence of cross-industry agglomerations. Firms in Jacobian clusters can still benefit from local talent 

pool or specialized suppliers, emerging from a common technology, while minimizing knowledge 

outflows to direct competitors. Second, the purpose of carrying out R&D is to serve the firm’s strategic 

goals, which are established for the long run and are not easily altered. In other words, the type of R&D 

needed for the firm’s long-term development is, to a large extent, predetermined. Fortunately, this is less 

of a problem for multi-location firms, who usually manage large portfolios of R&D projects. They are 

able to allocate projects strategically to specific locations without altering the overall innovation 

objectives.  

2.3 Appropriability through Internalization 

Knowledge assets are not only interconnected, but also cumulative in nature (Dierickx and Cool 

1989). Most commercial offerings are the result of a long sequence of technological improvements 

(Vickers 1986). If a firm can build on its new technologies more efficiently than potential imitators, then 

it may gain the crucial lead time in the marketplace and still appropriate value from innovation. 

In fact, the innovating firms are often in an advantageous position to identify and further develop 

the locally produced intellectual properties, despite the intensive information flow in technology clusters. 

First, due to the high uncertainty and tacitness associated with technologies, the potential value of an 

innovation is not always straightforward to outsiders (Arora et al. 2001). The innovating firm, with its 

hands-on experience in the R&D process and comprehensive understanding of the context, is able to 

move on to the next stage without the costly learning process (Mansfield et.al. 1981). Second, for a 

geographically dispersed organization, knowledge that is difficult to codify or teach can be more 

efficiently transferred within the firm. Technologies developed in one technology cluster can be 

transferred internally, facilitating the accumulation and integration of knowledge throughout the 

organization (Bartlett and Ghoshal 1990, Kogut and Zander 1993).  

Internalization as a mechanism of value appropriation has also been tested in various empirical 

settings. For example, Zhao (2006) suggests that the ability to integrate and build on internal technologies 
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enables multinational firms to conduct R&D in countries with weak intellectual property rights protection. 

There, firms develop technologies that are intricately related to the firms’ expertise residing elsewhere in 

the world, so local imitation of these specific technologies does not affect the firms’ value appropriation 

on the global market. Similarly, based on a large sample of U.S. headquartered multinational firms, 

Feinberg and Gupta (2006) find strong evidence that firms respond to high risks in the host countries by 

increasing the extent of internal transactions. Thus, we argue that firms can appropriate value from their 

R&D in technology clusters if they can internalize the resultant technologies better and faster than nearby 

competitors, and the importance of such strategies increases with the intensity of local competition. 

Accordingly, we expect higher levels of internalization for technologies developed in clusters with larger 

numbers of competitors. 

2.4 Appropriability through Control 

When facing appropriability risks, firms also strategically adjust their organization and governance 

structures for the protection of valuable intellectual properties. In the strategic alliance literature, firms are 

found to adopt more hierarchical, instead of contractual, governance modes when knowledge protection is 

weak (Oxley 1999), and that they carefully limit the scope of knowledge sharing when partnering firms 

are direct competitors (Oxley and Sampson 2004). 

From a theoretical perspective, Rajan and Zingales (2001) explain why flat hierarchies – in which 

all division managers are required to collaborate with a central unit at the top – are ubiquitous in human 

capital-intensive industries such as legal and consulting services. Because of the intangible nature of 

critical resources, enforcing property rights is difficult, and competition is fierce. In such circumstances, 

controlling the access to certain key resources renders each division alone less efficient than the whole, 

thus preventing the risk of expropriation. Similarly, Liebeskind (1996) argues that disaggregating tasks 

gives firms an advantage in knowledge protection, especially when reinforced by spatial isolation. In 

other words, appropriability risk is reduced if each division is highly dependent on its linkage to other 

parts of the organization.  
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One indication of such linkages is the participation of researchers from other locations in local R&D 

projects (Nobel and Birkinshaw 1998). Edstrom and Galbraith (1977) propose that transferring managers 

across units can be considered a coordination and control mechanism in multinational organizations. 

Based on knowledge specialization and interpersonal networks, this kind of rotation facilitates control at 

the corporate level while still allowing autonomy and flexibility at the local level – features that are 

important for innovative activities. Given the nontrivial costs of organizing such cross-regional linkages 

(Cummings 2004), we would expect more internal linkages in regions with higher appropriability risks, 

e.g. in clusters with a large number of direct competitors. 

3. Empirical Design 

3.1 Sample 

Our empirical setting is the worldwide semiconductor industry from 1998 to 2001. We choose this 

industry for several reasons. First, innovation is a key factor of success in semiconductors. Firms invest 

relentlessly in R&D to introduce new products and improve production processes (Stuart 2000). 

Moreover, firms in the industry routinely patent their innovations, and patent data have been used to trace 

the traits and geographic distribution of innovation. Second, the benefit of cross-firm knowledge spillover 

has been documented as the driver of agglomeration in the industry (Saxenian 1994, Fleming, et al. 

2006). The high levels of geographic concentration in this industry also suggest that firms may have 

already developed appropriability strategies to manage outward spillover. Third, this is a truly global 

industry with leading firms operating at multiple locations around the world, and there exists significant 

heterogeneity among the semiconductor firms in terms of their product markets, R&D portfolios, position 

in the value chain and geographic locations. Firms range from industry giants that participate in activities 

throughout the value chain to enterprises that specialize in design (known as fabless) or testing, from 

large multinational firms to small local firms. Other players, such as universities, national laboratories and 

firms from other industries (e.g., aerospace and chemicals), also conduct active R&D in semiconductors. 
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Such heterogeneity allows us to identify the effect of different competitive environments on firms’ 

appropriability strategies and allocation of R&D projects.    

We build our dataset from four different sources. First, we identify innovating firms using patent 

data from the Derwent World Patent Index (DWPI), a well-recognized dataset that encompasses over 30 

million patent documents from 41 patent-issuing authorities worldwide, and we rely on Derwent’s 

technological classification1 to obtain the universe of semiconductor patents. Patent data include 

innovations that occur outside of the R&D facilities, thus are more inclusive than the number of labs or 

the amount of R&D spending. Information from semiconductor patents applied between 1998 and 2001, 

and granted between 2001 and 2004, results in a sample of 60,880 patents.  

Many of these patents are linked to the same innovation, with exactly the same inventors, assignees 

and abstracts. Multiple patents per innovation can occur either because patents are filed in multiple 

countries or because an application in a given country spins out multiple patents. For example, 16% of 

patents granted by the U.S. Patent and Trademark Office (USPTO) in our sample are duplications. Thus, 

we follow Gittelman and Kogut (2003) and use families of patents as our unit of analysis. Each family 

encompasses patents granted in all countries that are identical in terms of technology, inventors, locations, 

and differ only in the scope of their claims. The final sample consists of 23,675 patent families2 whose 

assignees are American and foreign firms, universities, as well as government- and industry-sponsored 

research labs. For the 300 patent families that have more than one assignee, all assignees, not only the 

first one, are considered. Patents granted in the U.S. represent 46% of all the patent family members, 

followed by those in Europe (17%), Japan and Korea (7% each), and Taiwan (6%). 

                                                 

1  DWPI applies a consistent classification system to all patents. Classes used in this study are U11 (semiconductor 

materials and processes), U12 (discrete devices), U13 (integrated circuits) and U14 (memories, film and hybrid 

circuits). For more details, see http://scientific.thomson.com/support/patents/dwpiref/reftools/classification. 

2  Besides patents, these families also include 29,491 patent-related documents such as PCTs. 
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This initial sample is supplemented with directories of semiconductor plants, fabless companies, 

and institutions behind scientific publications. Information on plants comes from the quarterly datasets of 

the World Fab Watch provided by the Strategic Marketing Association, from 1998 to 2001. The datasets 

encompass manufacturing facilities for a wide range of products: memories, microprocessors, generic and 

specific chips, etc. Information on fabless companies is obtained from the Gartner Group’s annual 

Directory of Fabless Semiconductor Companies for the same period. To assess the scientific activities in 

the local community, we extract from ISI Web of Knowledge all journal publications in the sample period 

that use “semiconductor” or “semiconductors” as part of their keywords. These four data sources provide 

a comprehensive map of the industry at multiple levels: innovation (23,675 patent families), production 

(974 plants), research (26,581 scientific publications), and development (549 fabless companies).   

Because we treat every multi-unit firm as an integral entity and because internal organization is a 

central concept of this study, we put extra effort into identifying the ultimate parent for every entity in our 

sample. First, for each year, we match the patent assignees, plants and fabless companies to firms in the 

corresponding Directory of Corporate Affiliations (DCA), an annual database that records corporate 

ownership for over 200,000 private and public firms worldwide. Second, for organizations not identified 

in DCA, we search the Dun and Bradstreet Million Dollar Database to obtain affiliation information. 

Finally, we check affiliation changes through SDC Platinum, company websites and various industry 

publications. The above steps map the 4,125 assignees in the sample to 2,217 unique organizations.  

Fabless firms and manufacturing firms that do not own patents add 721 additional organizations to our 

sample. 

While we use data for all organizations to characterize the local environments, our analysis of R&D 

strategies is focused on the top 16 innovating firms in the industry3. These large multinational firms 

correspond to the top 1% of all firms in terms of patent families, representing 50% of the patent output 

                                                 

3 The 16 firms are AMD, Intel, IBM, Texas Instruments, Hitachi, Matsushita, NEC, Siemens (including Infineon), 

Toshiba, Mitsubishi, Samsung, Micron, Fujitsu, TSMC, Hyundai, and STMicroelectronics. 
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and 40% of the plants operating in this period. The composition of the sample is similar to those in 

previous studies of the semiconductor industry (Stuart and Podolny 1996, Henisz and Macher 2004, 

Ziedonis 2004). As part of our robustness checks, we replicate our analyses using two alternative samples 

– composed of the top 5% and 10% firms in terms of patent families – and obtain similar results. 

3.2 Cluster Definition  

Defining technology clusters is a crucial element in our empirical setup. Instead of relying on 

predetermined administrative boundaries, such as states or metropolitan areas, we apply a mathematical 

algorithm that uses latitude and longitude data to identify technological clusters. Two main reasons justify 

this decision. First, there is not an administrative unit that is universally defined across all countries. We 

have to either focus on a specific country (e.g., the U.S.), which fails to capture important features of 

global firms, or use a mix of different geographic units (e.g., states in the U.S., prefectures in Japan and 

provinces in Europe), which may create unexpected country biases. Second, technological clusters do not 

necessarily follow predetermined administrative boundaries, which is clear after a quick inspection of 

inventor locations in, e.g., northeast U.S. and central Japan. One administrative unit may encompass 

multiple clusters, while one technological cluster may expand across administrative lines.  

In this study, we define clusters based on the actual distribution of inventor locations, following a 

three-step approach. First, we identify the location of each element (i.e., a patent inventor, plant, fabless 

company or scientific publication) in the sample, and match the locations to two comprehensive sources 

of geographic names. For U.S. locations, we use the Geographic Names Information System (GNIS) of 

the U.S. Geological Survey and obtain latitude and longitude information for all 38,261 locations in the 

country. For foreign locations, we use the Geonet Names Server (GNS) of the National Geospatial 

Intelligence Agency. Besides its wide coverage of 5.5 million location names worldwide, the GNS dataset 

also includes phonetic variations for the spellings from a different alphabet (e.g., Asian countries) or an 

alphabet with extra characters (e.g., Scandinavian and Slavic countries). Ambiguous matches are checked 

manually by native speakers from various countries and areas. As a result, we are able to assign latitudes 

and longitudes to 38,926 out of the 38,952 foreign locations in the original sample. 
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In the second step, we develop a mathematical algorithm to identify geographic clusters using the 

latitude and longitude information. Clusters are defined not only by the geographic distance among 

locations – as many other traditional clustering methods do – but also by the variations in inventor density 

in neighboring areas. For example, a rapid decrease in density may signal the end of a cluster, and a 

continuous level of inventor density may signal a long or irregularly shaped cluster. Accordingly, the 

algorithm assigns two locations to the same cluster if there is a continuity of high-density locations 

between them, despite their geographic distance. In contrast, two locations separated by a stretch of low-

density areas may be identified as two distinct clusters, even if they are not far away from each other. Our 

clustering algorithm offers the additional advantage of having the number of clusters emerge naturally 

from the data, instead of being set arbitrarily ex ante. This method produces 304 geographic units. 

Finally, plants, fabless companies, and publications are assigned to the geographic units defined 

from the patent data. In most cases, they fall within an existing geographic unit. For each location that 

falls out of all existing units, we calculate its shortest distance to them. The location is considered part of 

the closest cluster if the minimum distance is less than 15 miles4. Otherwise, the unassigned locations are 

again clustered with the same algorithms as we use for the patent locations. For the main sample, 6 and 

28 geographic units were added by fabless and plant data, respectively5. 

3.3 Dependent Variables 

3.3.1 Technological Distance 

Following Jaffe (1986), we construct technological vectors at the firm-location-year level to measure 

the technological distance among firms. The vectors are built based on Derwent’s technological 

classification system. The technological distance between two vectors i and j is defined as: 

                                                 

4  We also tried other minimum distances, e.g., 20, 25 and 30 miles, with very similar outcomes. 

5  Note that geographic units identified are not necessarily technology clusters, which are units with high innovation 

densities. For convenience, we use “cluster” and “geographic unit” interchangeably whenever there is no concern 

of confusion. The analysis is replicated with a hierarchical clustering algorithm in robustness checks. 



- 13 - 

( )( ) ( )1,0
''

'
1 ∈−=

jjii

ji
ij vvvv

vv
D  (1) 

A feature of this measure, as Jaffe (1986) points out, is that the absolute number of patents does not 

affect the result; what matters is the structural distribution across technology classes. Dij = 1 when the two 

vectors are orthogonal (i.e. firms’ innovations have no overlap at all) and Dij = 0 when they are parallel 

(i.e. firms’ innovations fully overlap in the technological space). To determine whether firm i chooses to 

keep certain technological distance from other players, we calculate pair-wise technological distance Dij 

between the local patents developed by the focal firm i and those developed by every other firm j that has 

R&D in the same cluster-year. The average of all these pair-wise measures – technological_distanceict – is 

used as firm i’s technological distance from local innovators of cluster c in year t.  

3.3.2 Internalized Value 

A key concept in this study is the extent to which the value of an innovation is appropriated by the 

innovating firm. While there is no direct measure of value, technologies highly dependent on internal 

resources are more likely to be utilized and further developed within the firm. Trajtenberg, et al. (1997) 

propose self-citations, defined as “the percentage of citing patents issued to the same assignee as that of 

the originating patent,” to measure the “fraction of the benefits captured by the original inventor.”  Hall et 

al. (2005) also suggest that citations to patents that belong to the same firm represent internalized 

knowledge transfers leading to the firm’s competitive advantage. Hence, we use forward self-citations as 

a proxy for the internalized value of technologies. Specifically, we define the variable self_citationp as the 

number of self-citations among all citations received by patent family p; citations to a patent family is the 

sum of citations to all its members. Because we are interested in firms as integrated organizations, any 

citations among affiliated organizations are considered self-citations.  

A common critique of citation-based measurements is the unknown nature and extent of citations 

imposed by patent examiners (Jaffe, et al. 2000). Recent research reveals that examiner citations account 

for 66% of all citations in an average patent, which may bias empirical tests (Alcacer and Gittelman 2006, 

Sampat 2006). To avoid this problem, our main models are estimated using citations listed by inventors 
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only. In our sample, about 38% of the patent families that receive at least one inventor citation also have 

at least one self-citation. The number is 30% when both inventor and examiner citations are considered.  

3.3.3 Control 

Geographically decentralized R&D in a multi-location firm increases the challenges of effectively 

appropriating returns from innovation and preventing outward spillover to competitors (Sanna-Randaccio 

and Veugelers 2002). Assigning R&D projects to teams spanning multiple clusters can create links within 

the organization that not only enhance appropriability, but also facilitate the transfer of local know-how 

throughout the organization (Lahiri, 2003). Thus, we define cross_clusterict as the number of patent 

families per firm-cluster-year for which the inventors are from at least two different clusters. 

Furthermore, we differentiate the firms’ home bases – locations where firms conduct most of their 

R&D – from their peripheral R&D facilities. We then identify the cross-cluster links that involve the 

home bases and those connecting peripheral locations only. As shown in Table 1, the average number of 

cross-cluster links per firm-cluster-year is 4.4. Cross-cluster teams involving the home bases are more 

common than teams that link peripheral locations (1.65 vs. 1.38).  

3.4 Independent Variables 

We follow two dimensions – technology space and product market – to characterize the competitive 

environment at the cluster-year level. Along the technology space, competitors are defined generically as 

organizations that innovate in the semiconductor field. The variable innovators represents the number of 

unique assignees with semiconductor patents in a given cluster-year. We then classify assignees into two 

groups: innovators_profit and innovators_nonprofit capture the number of for-profit and nonprofit 

assignees, respectively. In addition, we use the status information on patent applications6 to further 

classify for-profit assignees into small or large entities, thus creating the variables small_innovators and 

large_innovators. In the case of nonprofits assignees, we manually classify them into three groups: 

                                                 

6   The USPTO uses industry-specific parameters such as number of employees and revenues to grant small firm 

status to assignees. For details see http://www.uspto.gov/web/offices/pac/mpep/documents/appxr_1_27.htm. 
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universities (universities), government agencies (govt_innovators), and other nonprofits such as research 

centers sponsored by industry associations (other_nonprofit).  

Along the second dimension, competitors are defined as firms that share the same product-market. 

For every focal firm in our sample, we rely on Hoover’s Online to identify its industry (four-digit SICs), 

market segments within semiconductors7, as well as the names of its direct competitors. Then we count 

the number of for-profit assignees that are in the same industry (in_industry and not_in_industry), in the 

same market segment (in_segment and not_in_segment), or on the list of direct competitors (competitors 

and not_competitors).  

We complete the characterization of local innovation environments with three more variables: 

plants_in_cluster, fabless_in_cluster and publications_in_cluster, which represent the numbers of plants, 

fabless companies and publications per cluster-year. In addition, we use two dummy variables, with_plant 

and with_fabless, to indicate whether a particular firm has plants or fabless units in cluster c and year t. At 

the firm level, we include two variables, patents_semi and patents_total, to capture the number of patents 

that a firm has up to year t, in semiconductors and in all technological classes, respectively. Our focal 

firms have on average 200 semiconductor patents and 1,295 patents in all technology categories. Table 1 

presents the descriptive statistics for all dependent and independent variables used in the empirical tests. 

3.4 Methods 

To identify firms’ strategic organization of R&D projects across locations, we compare the 

technologies developed in different local environments, controlling for firm characteristics. Specifically, 

the three dependent variables – technological_distance, self_citation, and cross_cluster – are the three 

dimensions that characterize local innovations and are correspondent to the three appropriability strategies 

described in the previous section.  

Thus, we estimate three basic equations, one for each dependent variable, in the following form: 

DVict= Cict+ Xict + Yct + ζt +υi + τctry +εict     (2) 

                                                 

7  Hoover’s reported 13 segments under semiconductors, including memory chips & modules, microprocessors, etc.  
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where Cict  is a vector of cluster-specific variables capturing the competitive environment faced by 

firm i in cluster c and year t,  Xict is a vector of firm-specific variables characterizing firm i in cluster c and 

year t, and Yct is a vector of location characteristics in year t. ζt and υi are two sets of dummy variables for 

year and firm fixed effects, respectively. Variations in country-specific intellectual property right regimes 

are controlled by the country dummies τctry, and εict is the error term.  

Note that the analysis for self_citation is conducted at the innovation-level (i.e., patent-family), 

while the analyses for technological_distance and cross_cluster are conducted at the firm-cluster level. 

As self_citation and cross_cluster are both count variables, negative binomial models are used for the 

estimations8. For technological_distance, a continuous variable between 0 and 1, we use both OLS and 

Tobit model for the estimation and obtain consistent results. Only the OLS results are presented due to 

space constraints. 

4. Empirical Results 

4.1 Analysis of Technological Distance 

Table 2 presents the estimates for technological_distance using OLS and the DWPI classification 

system9. Recall that the distance measure is equal to 0 when two technology vectors overlap and 1 when 

they are orthogonal. Therefore, positive coefficients indicate a divergence in technology (a larger 

technological distance) and negative coefficients indicate a convergence (a smaller distance).  

Our prior is that firms diverge from technologies developed in the local community when the 

imitation threat from nearby competitors is high. As shown in models (1) and (2), the focal firm develops 

innovations that are more technologically distant as the number of for-profit innovators, particularly large 

for-profit innovators, increases. In models (3) to (5), we measure the competitive environments following 

the product-market definition. Across specifications, positive and highly significant coefficients of 

in_industry, in_segment and competitors indicate that the presence of competing firms induces larger 

                                                 

8  The exposure variables are total citations and total patents, respectively. 

9  We also construct the technology vectors based on IPC or USC, and obtain similar, but statistically weaker results. 
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technological distance. Interestingly, a larger presence of nonprofit innovators is associated with 

technological proximity. A potential explanation for this finding is that firms feel less threatened by 

nonprofit organizations and are more attracted by the learning opportunities that they offer. 

Regarding our control variables, the coefficient of with_plant is positive and significant. This may 

be caused by innovations that are closely linked to the manufacturing processes, which tend to be more 

firm-specific. Overall, the findings are consistent with the argument that firms keep a larger technological 

distance from local innovations when there is more direct competition in the neighborhood. 

Some caveats may arise from using the average pair-wise distance as dependent variable. For 

example, a firm that keeps a large technological distance from direct competitors but is close to any other 

organizations in the cluster may end up with a small average distance. Moreover, a new entrant with its 

technological niche may inadvertently increase the average distance for every firm in the cluster. To 

overcome this issue, we conduct further analysis at the dyad level, using the dyadic technological distance 

between two organizations in a cluster. Specifically, we estimate the equation: 

technological_distanceijct= compij + υi + ζt +κc + τctry +εijct     (3) 

where compij indicates the competitive relationship between the focal firm i and the reference entity 

j. If both i and j are focal firms, their technological distance is taken only once to avoid duplications. κc is 

a set of cluster fixed effects, and ζt , υi and τctry are the same dummy variables as defined in equation (2).  

Models (6) to (10) shows the results of estimating equation (3) using OLS. For models (6) through 

(8), the omitted dummy group for compij corresponds to dyads where entity j is a nonprofit organization. 

The results are similar to those obtained by using the average distance: technological distance increases 

when the reference firm is in the same industry, same segment or direct competition on the product 

market. In model (9), we explore the distance effect among different types of nonprofit organizations, by 

changing the omitted dummy group to for-profit firms that are not direct competitors. The results show 

that technological distance increases when the reference entity is a government agency, which may 

indicate the specific defense-related research by these institutions. The distance effect is not significant 

when the reference entity is a university or other nonprofit organization.  



- 18 - 

The reference organization’s local R&D effort is considered in models (10). The dummy variable 

comp_core_cluster is equal to 1 if the competitor conducts the largest percentage of innovations in the 

cluster. As discussed in Section 2, we expect to see larger technological distance when a focal firm 

innovates in a competitor’s core technological cluster. The positive and statistically significant coefficient 

on the interaction term comp_core_cluster × competitor suggests that firms take even more cautious 

approaches when locating next to the central lab of a competitor, presumably because of the latter’s larger 

absorptive capacity. Co-location in a competitor’s core cluster is expected to increase the technological 

distance by approximately 0.30, twice the increase caused by co-location in a non-core cluster.  

4.2 Analysis of Internalization 

Table 3 presents the results of estimating self_citation, using negative binomial models. Because 

the dependent variable is the number of self-citations received by the focal patent, and the exposure 

variable is the total number of forward citations, we are essentially examining the patent’s self-citation 

ratio. OLS regressions with self-citation ratio as dependent variable produce very consistent results. 

The total number of innovators in the cluster does not seem to have any significant impact on 

internalization, even if we only consider for-profit innovators. The effect of competition starts to emerge 

when we distinguish large from small for-profit innovators. An increase in the number of neighboring 

large firms increases the self-citation ratio while the opposite is true for small firms. The effect of local 

competition is more evident when competition is defined in the product market rather than in the 

technology space. Across various specifications of market competition, the coefficient on the number of 

local competitors is positive and significant. The more market competitors there are in a cluster, the more 

likely it is that firms self-cite their own patents developed from there. To the extent that self-citations 

proxy for internalized value, this finding supports our argument that in highly competitive environments, 

firms tend to develop technologies more integrated with their internal resources.  

Meanwhile, the presence of nonprofit innovators has little impact on the degree of internalization. 

Without direct market competition, these nonprofit institutions create a more open atmosphere in the local 

cluster. An alternative explanation for this phenomenon is that firms choose to locate in close proximity 
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to universities or government laboratories for the purpose of knowledge seeking. Intensive internalization 

may negatively affect the firm’s ability to absorb external information. Not surprisingly, the coefficient of 

patents_semi is positive and significant; the larger the patent pool is in the technological domain, the 

more likely that later citations are made to that pool. The coefficient of with_plant is still positive and 

significant, indicating that technologies closely linked to manufacturing processes are more firm-specific.  

Note that the high self-citation ratios in competitive clusters are not due to the low intrinsic value 

(small denominator) of these patents. When running the same regressions with total number of citations 

instead of self-citations as the dependent variable, none of the coefficients associated to competitive 

environments are significant. To further verify this point, we compare the number of self-citations and the 

number of total citations – commonly used as measure of patent quality – across various competitive 

environments. Specifically, we use Hoover’s data on direct market competition to define four quartiles, 

with Quartile 1 indicating the clusters with the highest number of direct competitors and Quartile 4 with 

the lowest number of competitors. While there are significant differences in self-citations across quartiles 

– more self-citations are found in clusters with more competitors – we find no statistical evidence that 

patent quality varies across quartiles. Together, these findings suggest that firms do change the type of 

innovation performed depending on the local environments. Innovation produced in clusters with a strong 

presence of direct competitors is more tightly intertwined with the firm’s internal knowledge base.  

4.3 Analysis of Control 

Table 4 shows the regression results of cross_cluster with negative binomial models. Models (1) to 

(5) use the total number of local patents as exposure variable, so we essentially test the percentage of 

local patents that are developed by cross-cluster teams. The positive coefficients of innovator_profit, 

in_industry, in_segment and competitors suggest that the presence of competing organizations increases 

the tendency to use cross-cluster teams. As with the analysis of self-citations, the number of nonprofit 

innovators has no effect on the tendency of using cross-cluster teams. 

Most of the results with control variables follow the same pattern as in the previous tables. The 

presence of a plant in the cluster increases the use of cross-cluster teams, probably a reflection of 
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production-related projects that require inputs from local engineers and R&D personnel at headquarters. 

Note that we add a new control variable, core_cluster, to indicate whether the cluster is the main R&D 

site for the firm. One would expect that a centralized system exerts more control over geographically 

dispersed innovation by tightly connecting them with a core R&D center. As expected, the coefficient of 

core_cluster is positive and highly significant. 

We further explore cross-cluster links between core and peripheral locations. Models (6) to (10) 

show the results with a new dependent variable, to_clusterict, which counts the number of patents in the 

non-core cluster c that have at least one inventor located in firm i’s core cluster. The exposure variable 

used for this estimation is the number of all firm i’s cross-cluster patents in cluster c (cross_clusterict); 

hence, we essentially explore the percentage of cross-cluster patents that are linked to the core cluster. 

The results are very consistent with previous findings. That is, an increase in the number of competitors in 

the peripheral clusters increases the percentage of cross-cluster links that connect to the core cluster, and 

this effect is stronger when the competitive environment is measured by product-market competition. 

Therefore, not only does local competition increase the occurrence of cross-cluster links, but the increase 

is particularly due to connections with the firms’ home bases.  

4.4 Robustness Checks 

The above findings are consistent with our hypothesis that R&D projects in competitive clusters are 

technologically further away from those of direct competitors, utilized more internally, and more likely to 

involve teams spanning multiple locations. Next, we conduct a series of robustness tests using alternate 

samples, variable definitions, and estimation techniques. 

First, we re-estimate all models with a different method to define clusters: hierarchical clustering 

with centroid linkages. This method begins with each location as a separate group. Then two clusters with 

the shortest Euclidian distance are combined into one, whose new geographic coordinates are the mean 

longitude and latitude of all locations in the group. This process is repeated until a large hierarchical tree 

is generated that include all locations. Cluster membership is determined by the number of desired 

clusters that we pick region by region to accommodate the wide variation in local densities. This process 
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produces 187 distinct geographic units. The coefficients obtained with the hierarchical clustering method 

are similar in sign, significance and magnitude to those in the previous tables. 

Second, we repeat the analysis on self-citation ratios using both inventor and examiner citations. 

Recent research suggests that high levels of examiner citations are associated with low quality patents 

(Alcácer and Gittelman, 2006; Sampat, 2006). Therefore, including these citations adds a new set of 

observations – patents whose citations are 100% examiner-imposed – that may represent inferior 

innovations. The results using citations from all sources are similar in magnitude and sign to, but weaker 

in statistical significance than, those in Table 3. 

Finally, we estimate the models with cluster fixed effects to control for unobservable factors at the 

cluster level. Due to the large number of dummy variables for firms, years, countries and clusters, some 

models fail to converge. Nevertheless, for most models, the competitive measurements based on product 

market, especially those related to direct competition, come up with coefficients that are statistically 

significant with the expected signs.  Since any location-specific variations are controlled for by the cluster 

dummies, the results strengthen our belief that firms adjust their local R&D strategies according to the 

particular competitive environment they are facing. 

5. Conclusion 

While geographic agglomeration has obvious benefits for firm innovation, it can also bring serious 

drawbacks. We are interested in exploring how firms are able to tap into the rich resources in technology 

clusters while still appropriating value from innovation. Our empirical findings suggest that leading firms 

strategically organize their R&D activities when facing local competitors. A multi-location firm may 

allocate less vulnerable projects to clustered areas, incorporate local innovations quickly into its global 

knowledge base, and use cross-cluster teams to intensify the control over locally developed technologies, 

hence reducing imitation risks. Moreover, firms’ strategic responses vary depending on the characteristics 

of nearby organizations. We find strong evidence of strategic behavior when the neighboring firms share 

the same product market, but not when they overlap in the technological space.  
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For firms making location decisions, this study shows that the highly competitive technology 

clusters are not the forbidden land for industry leaders. Admittedly, the intensive local information flow 

poses a potential threat to their technological leadership and may even erode their competitive advantage. 

However, large multinational firms can take advantage of their geographically dispersed organizations to 

plan their local R&D. The risk of exposing certain technologies to local competitors is low if the local 

competitors do not have the capabilities to absorb or appropriate these technologies. To take it one step 

further, because potential knowledge spillovers from the industry leaders tend to attract small firms to 

cluster around them, avoiding technology clusters is hardly an option for the most technologically 

advanced. Strategic organization of R&D activities is crucial in such circumstances. 

Policy makers who are eager to nurture local high-tech industries often use various incentives, such 

as tax breaks, to attract firms to conduct R&D there. However, the government has little influence on how 

R&D is actually conducted. With local projects closely intertwined with the firms’ global research 

agenda, the same R&D budget or R&D intensity may generate very different knowledge spillover to the 

local community. It would be interesting for future research to examine the features of local environments 

that facilitate not only R&D investments, but also active learning across firm boundaries. 

This study also points to several avenues for further inquiries. First, although the mechanisms 

explored in this paper are based on multi-unit firms, the need to appropriate economic rents from 

proprietary innovation is universal and applies to any firm or organization. More research is needed to 

understand other appropriability mechanisms that do not rely specifically on multiple locations. 

Second, the strategies discussed in this study are based on a well established set of internal routines 

and organizational skills that facilitate the transfer and integration of geographically dispersed knowledge. 

Obviously, not every firm can achieve the strategic allocation of R&D resources with enough efficiency 

or cost effectiveness. Hence, it is important to understand how firm heterogeneity affects the applicability 

of these strategies, and how various internal organizational structures influence firms’ abilities to absorb, 

transfer and appropriate knowledge from technology clusters. 
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Third, our arguments evolve predominantly around competition and have excluded the possibility 

of inter-organizational cooperation. However, there are frequent project collaborations, strategic alliances, 

and industrial associations among semiconductor firms, universities as well as other research institutions. 

Cooperative arrangements are even observed between direct market competitors. Such arrangements may 

affect the nature of R&D in a location and the appropriability mechanism at play. 

Finally, in the semiconductor industry, as in many other high-tech industries, R&D is fragmented 

across the value chain and, in some cases, outsourced to specialized firms (Arora, et al., 2001). In such 

circumstances, knowledge flow across organizational boundaries is not only necessary, but also desirable. 

Moreover, firms’ abilities to allocate resources and exercise strategic internalization are limited once 

innovation goes beyond the same hierarchical structure. Therefore, we need to better understand how 

firms appropriate value from innovations with permeable, changing, and diffuse firm boundaries.  
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Table 1. Descriptive Statistics 
    
    Obs. Mean St. Dev. Min. Max.
Dependent variables       
  self_citations (inventor) 5,266 1.09 3.20 0 57
       self_citations (inventor+examiner) 10,204 1.05 2.79 0 63
  technological_distance 935 0.32 0.17 0 1
  cross_cluster 1,089 4.42 9.23 0 90
       to_core 1,089 1.65 4.10 0 57
Independent variables    
Competition based on technology*    
  innovators 304 5.42 13.58 1 130
  innovators_profit 304 4.92 12.40 1 124
       small_innovators 304 0.72 2.98 0 33
       large_innovators 304 4.20 9.95 1 101
  innovators_nonprofit 304 0.50 1.44 0 12
       universities 304 0.29 0.94 0 8
       govt_innovators 304 0.15 0.59 0 6
       other_nonprofit 304 0.06 0.24 0 2
Competition based on prduct market*    
  in_industry 304 1.19 3.75 0 45
       not_in_industry 304 4.14 10.46 1 92
  in_segment 304 1.28 3.48 0 38
       not_in_segment 304 4.23 10.14 1 85
  competitors 304 0.81 1.93 0 14
       not_competitors 304 4.61 12.13 1 117
Cluster variables*    
   plants_in_cluster 304 2.54 7.92 0 75
   fabless_in_cluster 304 1.67 13.00 0 211
   publications_in_cluster 304 21.04 46.31 0 515
Firm-cluster variables*    
  with_plant 304 0.05 0.21 0 1
  with_fabless 304 0.00 0.00 0 0
Firm variables*    
  plants 16 18.03 8.11 7 36
  fabless 16 0.19 0.40 0 1
  patents_total 16 1,295.43 589.72 516 2,702
  patents_semi 16 199.97 102.96 120 530
       

* Statistics are based on averages across the years 1998-2000    
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Table 2: OLS estimates on technological distance between focal firms and local innovators 

           
Average distance Dyadic distance Dependent Variable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 plants_in_cluster 0.000 0.000 0.000 0.000 0.000       
  (0.15) (0.21) (0.64) (0.25) (0.41)       
 fabless_in_cluster 0.000 0.000 -0.001 -0.001 0.000       
  (1.27) (1.29) (1.98)* (1.75)† (1.39)       
 publications_in_cluster 0.000 0.000 0.000 0.000 0.000       
  (0.49) (0.21) (0.43) (0.39) (0.30)       
with_plant 0.114 0.114 0.114 0.112 0.112       
  (8.93)** (8.92)** (8.98)** (8.81)** (8.81)**       
with_fabless 0.027 0.034 0.032 0.018 0.038       
  (0.53) (0.67) (0.64) (0.36) (0.77)       
innovators_profit 0.001            
  (2.10)*            
     small_innovators  0.000           
   (0.23)           
     large_innovators  0.002           
   (2.31)*           
     in_industry   0.006    0.113      
    (3.68)**    (16.22)**      
     not_in_industry   0.000    -0.027      
    (0.19)    (4.53)**      
     in_segment    0.003    0.109     
     (2.64)**    (15.64)**     
     not_in_segment    0.000    -0.025     
     (0.49)    (4.13)**     
     competitors     0.007   0.126 0.142 0.127 
      (4.19)**   (15.95)** (23.83)** (20.78)**
     not_competitors     0.000   -0.015    
      (0.92)   (2.59)**    
 innovators_nonprofit -0.009  -0.007 -0.007 -0.007       
  (2.81)**  (2.20)* (2.29)* (2.43)*       
     universities  -0.008        0.006 0.006 
   (2.35)*        (0.78) (0.86) 
     govt_innovators  -0.004        0.051 0.052 
   (0.70)        (4.69)** (4.74)** 
     other_nonprofit  -0.025        -0.037 -0.037 
   (1.78)†        (1.61) (1.61) 
comp_core_cluster           0.011 
            (2.82)** 
comp_core_cluster × competitor           0.175 
            (11.82)**
Constant 0.162 0.163 0.160 0.164 0.165 0.333 0.328 0.345 0.330 0.337 
  (2.74)** (2.75)** (2.72)** (2.77)** (2.81)** (16.34)** (16.02)** (16.77)** (16.40)** (17.41)**
Firm fixed effects Y Y Y Y Y Y Y Y Y Y 
Year fixed effects Y Y Y Y Y Y Y Y Y Y 
Country fixed effects Y Y Y Y Y Y Y Y Y Y 
Cluster fixed effects N N N N N Y Y Y Y Y 
Observations 917 917 917 917 917 21,483 21,483 21,483 21,483 22,218
R-squared 0.21 0.21 0.22 0.22 0.22 0.14 0.13 0.12 0.12 0.14
           
Absolute value of z statistics in  
† significant at 10%; * significant at 5%; ** significant at 1% 
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Table 3: Negative Binomial estimates on self-citations 

 
Dependent variable: Self-citations; Exposure variable Total Citations 
  (1) (2) (3) (4) (5) (6) 
plants_in_cluster -0.005 -0.006 -0.014 -0.010 -0.006 -0.007 
  (1.71)† (1.74)† (3.73)** (2.75)** (1.89)† (2.12)* 
fabless_in_cluster -0.001 -0.001 -0.002 -0.003 -0.001 -0.001 
  (0.77) (0.85) (1.90)† (2.07)* (0.94) (0.85) 
publications_in_cluster 0.000 0.000 -0.001 -0.000 0.000 0.000 
  (0.58) (0.68) (1.13) (0.18) (0.77) (0.27) 
with_plant 0.132 0.130 0.185 0.169 0.121 0.134 
  (2.99)** (2.92)** (3.97)** (3.58)** (2.70)** (2.99)** 
with_fabless -0.053 -0.051 -0.159 -0.111 -0.159 -0.077 
  (0.19) (0.18) (0.58) (0.40) (0.56) (0.28) 
patents_total 0.000 0.000 0.000 0.000 0.000 0.000 
  (0.18) (0.17) (0.68) (0.19) (0.25) (0.15) 
patents _semi 0.002 0.002 0.002 0.002 0.002 0.002 
  (7.71)** (7.70)** (8.13)** (7.73)** (7.82)** (7.81)** 
innovators 0.001      
  (1.05)      
innovators_profit   0.002     
    (1.01)     
     small_innovators    -0.012    
     (3.53)**    
     large_innovators    0.015    
     (4.47)**    
     in_industry     0.028   
      (2.78)**   
     not_in_industry     -0.001   
      (0.25)   
     in_segment      0.006  
       (1.87)†  
     not_in_segment      0.0007  
       (0.40)  
     competitors       0.015 
        (2.06)* 
     not_competitors       0.0008 
        (0.47) 
 innovators_nonprofit   -0.003  -0.003 -0.001 0.002 
    (0.25)  (0.26) (0.10) (0.16) 
     universities    -0.009    
     (0.76)    
     govt_innovators    0.006    
     (0.18)    
     other_nonprofit    0.103    
     (1.40)    
Constant -17.434 -16.192 -16.903 -17.420 -17.404 -16.167 
  (0.01) (0.03) (0.02) (0.01) (0.01) (0.03) 
Firm fixed effects Y Y Y Y Y Y 
Year fixed effects Y Y Y Y Y Y 
Country fixed effects Y Y Y Y Y Y 
Observations 5,117 5,117 5,117 5,117 5,117 5,117 
Log Likelihood -5776.87 -5776.8 -5765.12 -5773.3 -5775.57 -5775.05 

Absolute value of z statistics in parentheses 
† significant at 10%; * significant at 5%; ** significant at 1% 
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Table 4.  Negative Binomial estimates on cross-cluster links 

Dependent variable Patents with cross-cluster links Cross-cluster links with core clusters 
Exposure variable Total number of patents All cross-cluster links 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
plants_in_cluster -0.019 -0.019 -0.023 -0.020 -0.023 -0.027 -0.034 -0.033 -0.028 -0.030 
  (4.48)** (4.30)** (5.23)** (4.67)** (5.36)** (4.11)** (4.44)** (4.77)** (4.26)** (4.50)**
fabless_in_cluster -0.001 -0.001 -0.002 0.000 -0.001 0.0017 0.0011 -0.0003 0.0046 0.0011 
  (0.74) (0.55) (1.34) (0.06) (0.48) (0.66) (0.43) (0.11) (1.82)† (0.43) 
publications_in_cluster 0.002 0.002 0.001 0.002 0.001 0.003 0.002 0.002 0.003 0.003 
  (2.93)** (2.34)* (2.06)* (3.06)** (2.14)* (3.15)** (1.65)† (2.38)* (3.46)** (2.83)**
with_plant 0.783 0.782 0.789 0.797 0.773 0.783 0.792 0.780 0.808 0.769 
  (9.94)** (9.94)** (10.12)** (10.07)** (9.96)** (7.49)** (7.59)** (7.47)** (7.77)** (7.38)**
with_fabless -0.064 -0.053 -0.045 -0.056 -0.044 0.580 0.622 0.611 0.819 0.658 
  (0.28) (0.23) (0.20) (0.24) (0.19) (1.50) (1.61) (1.57) (2.10)* (1.69)† 
patents_total -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.001 -0.001 
  (2.90)** (3.04)** (3.01)** (2.94)** (2.80)** (2.40)* (2.58)** (2.47)* (1.91)† (2.41)* 
patents _semi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  (1.34) (1.36) (1.15) (1.38) (1.50) (2.04)* (1.95)† (1.88)† (2.23)* (2.18)* 
innovators_profit 0.006      0.005      
  (2.18)*      (1.37)      
     small_innovators  0.002      -0.010     
   (0.26)      (1.23)     
     large_innovators  0.007      0.018     
   (1.89)†      (2.59)**     
     in_industry   0.038      0.044    
    (4.06)**      (3.30)**    
     not_in_industry   0.000      0.000    
    (0.05)      (0.03)    
     in_segment    0.009      0.017   
     (2.69)**      (3.72)**   
     not_in_segment    -0.005      -0.029   
     (0.67)      (3.10)**   
     competitors     0.046     0.034 
      (5.00)**     (2.58)**
     not_competitors     0.002     0.004 
      (0.91)     (1.02) 
 innovators_nonprofit 0.000  0.011 -0.006 0.007 -0.011  -0.001 -0.040 -0.010 
  (0.03)  (0.70) (0.37) (0.48) (0.43)  (0.03) (1.55) (0.39) 
     universities  -0.003      -0.031     
   (0.18)      (1.06)     
     govt_innovators  0.044      0.080     
   (1.34)      (1.68)†     
     other_nonprofit  -0.038      -0.0001     
   (0.51)      0.00      
core_cluster 1.44  1.45  1.44  1.45  1.46        
  (16.13)** (16.15)** (16.29)** (16.19)** (16.50)**       
Constant -0.333 -0.309 -0.319 -0.335 -0.258 -0.197 -0.164 -0.175 -0.215 -0.127 
  (1.09) (1.01) (1.05) (1.10) (0.85) (0.50) (0.42) (0.45) (0.55) (0.32) 
Firm fixed effects Y Y Y Y Y Y Y Y Y Y 
Year fixed effects Y Y Y Y Y Y Y Y Y Y 
Country fixed effects Y Y Y Y Y Y Y Y Y Y 
Observations 1,030 1,030 1,030 1,030 1,030 966 966 966 966 966 
Log Likelihood -2256.02 -2254.66 -2249.54 -2254.95 -2245.82 -1529.49 -1525.79 -1524.96 -1523.95 -1526.85

Absolute value of z statistics in  
† significant at 10%; * significant at 5%; ** significant at 1% 

 


