Managing risk in the supply chain

David Simchi-Levi
Engineering Systems Division
Massachusetts Institute of Technology

Gérard P. Cachon
The Wharton School
University of Pennsylvania

Supplement Chain Roundtable – July 2004

Agenda

- Sources of and tools for supply chain management risk
- Recent research on supply chain risk management
 - Risk neutral decision makers
 - Risk averse decision makers
- More discussion
Sources of supply chain management risk

- Demand risk
 - Strategic risk
- Supply risk
 - Environmental risk
- Price risk
 - Unknown risks
- Quality risk
 - Strategic risk
 - Environmental risk
 - Unknown risks

Tools for managing risk in the supply chain

- Location pooling
- Lead time pooling
- Product pooling
- Delayed differentiation
- Capacity pooling / flexible manufacturing
- Dynamic pricing / capacity controls
- Assemble-to-order
- Outsourcing / offsubscing
- CPFR, VMI
- Contracts (buy-backs, quantity flexibility, etc.)
- Markets/exchanges/auctions
- Financial engineering:
 - Deviation measures, real options, portfolio optimization, etc.
Literature – Managing risk in a risk neutral world

- Quality risk:

- Delivery lead time risk:
 - Cachon and Zhang (2004a,b)

- Supplier quality/performance:
 - Debo (2004)

- Forecast quality:

- Forecast sharing:

- Spot price volatility:
 - Wu, Kleindorfer and Zhang (2002); Wu and Kleindorfer (2004)

Allocation of inventory risk

- **Push**
 - “Sell to the newsvendor”

- **Pull**
 - “Buy from a newsvendor”

- Everyone in the supply chain can be better off by switching from one extreme risk allocation to the other (i.e., from push to pull or from pull to push)

- Smart allocation of risk can reduce the need for complex contracts.
Is supply chain risk reduction always Pareto improving?

- Iyer and Bergen (1997):
 - Quick response does not always benefit the supplier.

- Anupindi and Bassok (1999):
 - Location pooling at the retail level does not always benefit the supplier.

- Lee and Whang (2002):
 - A secondary market does not always benefit the supplier.

- Dong and Rudi (2004):
 - Inventory transshipment among retailers does not always benefit the supplier.

Is supply chain risk reduction beneficial in a competitive setting?

- Roller and Tombak (1993):
 - Manufacturing flexibility can be harmful.

- Carr, Duenyas, Lovejoy (1999):
 - Less demand or supply risk can be harmful.

- Anand and Girotra (2004):
 - Delayed differentiation can be harmful.

- But...

- Cachon and Harker (2002):
 - Capacity pooling with a contract manufacturer benefits competing firms because price competition is reduced.
Approaches to Risk Management

- **Economics literature**
 - Von Neumann-Morgenstern utilities
 - Expected utility $E\{U(\Pi)\}$

- **Finance literature**
 - Capital Asset Pricing Model (CAPM)
 - Markowitz Mean-Variance tradeoff $E\{\Pi\} - kVar\{\Pi\}$
 - Portfolio Approach

Linking Economics with Finance

- **When**
 - The utility function is quadratic
 - OR
 - The utility is CARA* $[U(\Pi)=-exp(-r \Pi)]$ and Π is normally distributed

- **Then**
 - Expected utility maximization is equivalent to mean-variance objective maximization

CARA: Constant Absolute Risk Averse
Supply Chain Management

- **Academia:**
 - Traditional models focus on maximizing **expected profit**

- **Practice:**
 - Significant increase in the level of risk faced by many companies
 - Examples: Cisco, Apple, Sony...

Literature – Managing risk in a risk averse world

- **Single Period**
 - Lau (80): Tradeoff between profit mean and standard deviation
 - Eeckhoudt, Gollier and Schlesinger (95): Exponential utility function
 - Chen and Federgruen (00): Mean-variance tradeoff
 - Schweitzer and Cachon (00): Empirical work

- **Multi Period**
 - Bourakiz and Sobel (92): Exponential utility function, base-stock is optimal

- **Infinite Horizon**
 - Bourakiz and Sobel (92): Exponential utility function, base-stock is optimal
 - Chen and Federgruen (00): Mean-variance tradeoff for inventory level or customer waiting time
Risk Measures

- Mean-Variance Limitation
 - Equally penalizes desirable upside and undesirable downside outcomes

- Other Risk Measures
 - Utility functions
 - VaR
 - CVaR

Risk Measure: utility function

\[
\max_{\mu \in \Pi} \mathbb{E}(u(f(\mu, \bar{d})))
\]

where \(u \) is a concave and increasing utility function. Special case includes

\[
u_b(w) = b(1 - e^{-w/b}).
\]

Notice that

\[
\lim_{b \to \infty} u_b(w) = w.
\]
Risk Measure: Value at Risk

Problems with Value at Risk

- Does not preserve subadditivity
 - A portfolio with two instruments may have a larger VaR than the sum of the VaRs of the two instruments
- The VaR risk measure is indifferent to the extent of which the profit falls below the q_η
Risk Measure: Conditional Value at Risk

\[\mathbb{CVaR}_\eta(f(\mu, \tilde{d})) = \mathbb{E}[f(\mu, \tilde{d}) \mid f(\mu, \tilde{d}) \leq q_\eta(f(\mu, \tilde{d}))] \]

Multi-period Inventory Model

- Single product, periodic review
- Finite horizon: \(T \)
- Fixed ordering cost: \(K \)
- Variable ordering cost: \(c_t \)
- Zero lead time
- Convex inventory and backorder cost: \(h_t(x) \)
- Demand function:
 \[d_t = -\alpha_t p + \beta_t \]
- Objective: Maximize expected utility or conditional value at risk of the total discounted profit
Multi-period model: sequence of events

Finite Horizon Model: Main Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Exact</th>
<th>Fixed Price</th>
<th>Price Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Neutral Model</td>
<td>Base stock</td>
<td>(s,S)</td>
<td>Base stock list price</td>
</tr>
<tr>
<td>Exponential Utility</td>
<td>Base stock</td>
<td>(s,S)</td>
<td>Base stock</td>
</tr>
<tr>
<td>Increasing & Concave Utility or CVaR</td>
<td>Wealth dependent</td>
<td>?</td>
<td>Wealth dependent</td>
</tr>
<tr>
<td>Heuristics</td>
<td>CVaR</td>
<td>Bass stock</td>
<td>(s,S)</td>
</tr>
</tbody>
</table>
Questions

- Is there a disconnect between academic research and industry needs?
- What is an appropriate risk measure?
- What are appropriate risk models?
 - Models that combine operational and financial hedging strategies
- Is there anything we can learn from other industries?
- Teaching cases?
- Methods to deal with “unknown unknown”...