Bankruptcy Design

B. Espen Eckbo

2010

Agenda

- Auction as a bankruptcy process
- Systemically important financial institutions
- Banking system bailout – Scandinavian style
Bankruptcy systems, internationally

- UK – a "receivership system" (until 2003)
 - Strong protection of secured creditor rights
 - Excessive piecemeal liquidations?

- US – a "renegotiation system" (Ch. 11)
 - Stay of debt claims, DIP financing, voluntary sale
 - Excessive continuation of old management?

- Sweden – a "mandatory auction system"
 - Stay of all debt claims, DIP financing possible
 - Excessive risk-shifting and fire-sales?

U.S. milestones

- 1978: Creation of Chapter 11 ostensibly to avoid fire sales

- 1980/90s: Growing evidence that U.S. Ch. 11 is costly

 The U.S. bankruptcy system seems to be fundamentally flawed. It is expensive, it exacerbates conflicts among different classes of creditors, and it often takes years to resolve individual cases... [The] value of viable businesses is destroyed... in providing life support for terminal cases. -- Michael C. Jensen (1991)

- 2000s: Market mechanisms lowering bankruptcy costs
Market mechanisms lowering bankruptcy costs

- Private workouts in “prepackaged” bankruptcy filings
- Debt markets - distressed bond ("vulture") funds
- Both developments has led to auction sales inside Ch. 11

When firms can be sold as going concerns, the need for the traditional negotiated plan of reorganization disappears... Today the Chapter 11 of a large firm is an auction of the assets, followed by litigation over the proceeds... [The era of] the law of corporate reorganizations... has come to an end.

Comparing control rights in bankruptcy

Mandatory Auction
- Management loses control
- Firm is restructured by buyer in auction
- Cash settlement according to APR
- Stay of collateral, DIP financing rare

Renegotiation
- Management retains control
- Firm is restructured by creditor consensus
- Securities payment, deviations from APR
- Stay of collateral, DIP financing frequent
"Hard constraint": CEO income changes following bankruptcy auctions in Sweden

Comparing duration, recovery, and survival

Swedish Auctions
- Av. duration 2 months
- Total debt recovery 40%
- APR strictly enforced
- 76% going concern sales
- Surviving firms perform at industry median

US Chapter 11
- Av. duration 2 years
- Total debt recovery 40%
- Deviations from APR
- 70% survive Chapter 11
- Surviving firms perform below industry median
Do auctions create fire-sale discounts?

- Auction demand may be temporarily low
 - Due diligence time pressure
 - Relatively efficient industry rivals may be cash constrained
 - Industry debt overhang – underinvestment incentives

- Result: winning bidder may be low-valuation (industry outsider)
 - If so, sales prices are temporarily low (discounted) relative to value of assets in best alternative use

But...

- No evidence of fire-sale discounts in auctions where the bankrupt firm is bought as a going-concern
 - (Eckbo and Thorburn JFE 2008)

- Auction premiums unrelated to
 - Degree of industry-wide distress and liquidity
 - Whether buyer is industry outsider v. insider
 - Whether acquisition method is merger v. LBO

- Also no empirical support for self-dealing arguments
“Fire-sale”: basic idea

- Auction demand is temporarily low
 - Time pressure
 - Auction requires cash payment, and relatively efficient industry rivals are cash constrained
 - Debt overhang and underinvestment incentives
- Result: winning bidder may be low-valuation (industry outsider)
 - If so, sales prices are temporarily low relative to value of assets in best alternative use

Counter-arguments...

- Inefficient buyers may hire efficient industry insider to run the firm
 - If so, the acquisition price may be right
- Cash constraints and incentive effects of debt overhang may lead to “project financing”
 - “LBO financing” of acquisition price
- Severe prospect of inefficient liquidation may prompt prepackaged bankruptcy filing
 - Increases the effective period available to search for efficient buyer
Our Swedish sample

- 258 bcy filings by private firms, 1988-1991
- Minimum 20 employees
- Average pre-filing assets of $3 mill.
- Complete set of auction prices for going-concern sales and piecemeal liquidations
- Average going-concern premium: 125%
- 75% of firms sold as going concerns
 - 60% are salebacks; 25% are prepacks

Bidder interest and actual bids

| Frequency | 147 going concern auctions, 1988-1991 |

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest</td>
<td>5.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Actual</td>
<td>3.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Empirical approach

- **Economic v. financial distress**
 - Prices may be low because decreases in industry profits permanently lowers demand (economic distress)

- **Step 1:** Estimate “fundamental” price
 - \(p^* = f(\text{asset size, profits, specificity, tangibility, PL}) \)
 - PL captures lack of going concern value

- **Step 2:** Estimate effect of fire-sale variables on model residual
 - \(p - p^* = f(\text{industry liquidity, auction outcomes}) \)

Table 2

Estimation of the fundamental auction price \((p^*) \) and auction debt recovery rate \((r^*) \)

The cross-sectional regression models in Panel A and Panel B are, respectively, \(p = \beta_0 + \beta_1 X_1 + \epsilon_1 \) and \(r = \beta_0 + \epsilon_2 \), where \(p \) is the total proceeds from the bankruptcy proceeding, and \(r \) is the debt recovery rate \(r = (P - C)/D \), where \(D \) is the face value of the target's debt and \(C \) is the direct cost of the bankruptcy proceeding. The fundamental auction price is defined as \(p^* = \beta_0 X_1 \), and the fundamental recovery rate is \(r^* = \beta_0 X_1 \). The table shows the OLS coefficient estimates \(\beta_0 \) and \(\beta_1 \). Total sample of 268 Swedish firms filing for auction bankruptcy 1986-1991. Variable definitions for the regressors in \(X_1 \) are given in Table 1 (p-values in parentheses).

<table>
<thead>
<tr>
<th>Target asset characteristics</th>
<th>Industry conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>Size</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>5.44</td>
<td>0.46</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>5.50</td>
<td>0.46</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

A. Auction price regressions

<table>
<thead>
<tr>
<th>B. Auction recovery rate regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.73</td>
</tr>
<tr>
<td>(0.000)</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>(0.000)</td>
</tr>
</tbody>
</table>
Step 2: Fire-sale tests

- Do price residuals (p-p*) and recovery rate residuals (r-r*) vary with industry liquidity?
- Industry liquidity measures (4-digit SIC level):
 - **Industry distress**: fraction of 15,000 firms with and ICR<1 or filing for bankruptcy next year
 - **Industry leverage**: median debt-to-asset (book value) ratio in the industry
 - Number of firms in industry
- Auction outcome
 - Industry outsider vs. industry insider
 - Buyout vs. merger

Table 3

Determinants of auction price residuals (p−p*) and recovery rate residuals (r−r*)

Coefficient estimates from OLS regressions of the standardized auction price residuals p−p* (Panel A) and total debt recovery rate residuals (Panel B). The standardized residuals are from the first regression model in Parts A and B of Table 3, respectively. The explanatory variables are defined in Table 1 (p-values are in parentheses).

<table>
<thead>
<tr>
<th>Industry Liquidity conditions</th>
<th>Auction outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>Distress</td>
</tr>
<tr>
<td>A. Auction price residual (p−p*)</td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>-0.50</td>
</tr>
<tr>
<td>0.88</td>
<td>(0.181)</td>
</tr>
<tr>
<td>0.50</td>
<td>(0.181)</td>
</tr>
<tr>
<td>0.50</td>
<td>(0.181)</td>
</tr>
</tbody>
</table>

B. Auction recovery rate residual (r−r*)												
0.07	-0.07	(0.118)	(0.118)	-0.08	-0.21	-0.00	0.00	0.00	1.11	258		
0.00	(0.118)	-0.02	(0.118)	-0.04	-0.23	0.00	0.00	0.00	1.28	258		
0.30	(0.118)	-0.06	(0.118)	-0.81	-0.30	0.42	0.00	0.00	1.11	258		
0.10	(0.118)	-0.01	(0.118)	0.04	-0.17	-0.19	0.00	0.00	1.11	258		
0.10	(0.118)	-0.19	-0.10	0.00	0.00	0.00	0.00	0.00	1.11	258		

Eckbo Bankruptcy Design (45)
Buyer industry affiliation

- Industry outsiders pay on average similar prices as industry insiders
 - No evidence of lower prices to “less efficient industry outsiders”
- Are prices sensitive to industry illiquidity measures for the subsample of industry outsiders?
 - Add interaction variables for industry distress across the going-concern subsamples

Table 4

Tests for the impact of industry distress on price and recovery rate residuals conditional on buyer industry affiliation

The dependent variable in Panel A is the standardised auction price residuals $p - p'$ from the first regression in Panel A of Table 2. In Panel B, the dependent variable is the standardised recovery rate residuals $r - r'$ from the first regression model in Panel B of Table 2. *Insider* is the complement to *Outsider* in column 1, so that *Outsider + Insider + PL = 1*. All other variables are defined in Table 1 (p-values in parentheses).

<table>
<thead>
<tr>
<th>Industry Liquidity conditions</th>
<th>Auction outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>Outsider</td>
</tr>
<tr>
<td>Industry Distress Outsider</td>
<td>Outsider + PL</td>
</tr>
<tr>
<td>(0.052)</td>
<td>-1.17 (0.231)</td>
</tr>
<tr>
<td>Industry Distress Insider</td>
<td>Outsider + PL</td>
</tr>
<tr>
<td>(0.062)</td>
<td>-1.17 (0.231)</td>
</tr>
</tbody>
</table>

A: Tests for the impact on the auction price residual $(p - p')$

| Industry Distress Outsider | Outsider | PL | Adj R² | F value | N |
|-------------------------------|-----------------|
| (0.165) | -1.09 (0.056) | 0.04 (0.419) | 1.02 (0.419) | 218 |
| (0.165) | -1.07 (0.056) | 0.04 (0.419) | 1.02 (0.419) | 218 |

B: Tests for the impact on the recovery rate residual $(r - r')$
Summary

- Price residuals decrease with industry distress for piecemeal liquidations but not for going-concern sales.
- Prices are lower in piecemeal liquidations.
- Firms with intangible and specific assets:
 - Are less likely to be liquidated piecemeal.
 - Are more likely to be sold to industry insider.
 - Are more likely to be financed using LBO technique.

Liquidation preemption?

- Excessive liquidation and fire-sales may be preempted by a prepack or a saleback.
- Prices in preemptive transactions should be
 - higher than in piecemeal liquidations (as going-concern value is preserved).
 - but lower than in regular going-concern sales (as buyer has more bargaining power).
Table II
Determinants of auction price residuals ($p - p^*$) and debt recovery residuals ($r - r^*$) in prepacks and salebacks

The standardized residuals $p - p^*$ and $r - r^*$ are from the first regression models in Panel A and Panel B, respectively, reported in Table 2. The explanatory variables are defined in Table 1 (p-values are in parentheses).

<table>
<thead>
<tr>
<th>Industry liquidity conditions</th>
<th>Auction outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>F- value</td>
</tr>
<tr>
<td>A. Auction price residual ($p - p^*$)</td>
<td>0.06 (0.002)</td>
</tr>
<tr>
<td>Di s t r e s s <GC></td>
<td>0.14 (0.030)</td>
</tr>
<tr>
<td>Di s t r e s s <PL></td>
<td>0.13 (0.030)</td>
</tr>
<tr>
<td>Le v e r a g e</td>
<td>0.45 (0.003)</td>
</tr>
<tr>
<td>N o of Firms</td>
<td>0.00 (0.000)</td>
</tr>
<tr>
<td>F L</td>
<td>0.17 (0.000)</td>
</tr>
<tr>
<td>P re p a c k</td>
<td>0.17 (0.000)</td>
</tr>
<tr>
<td>S aleback</td>
<td>0.34 (0.000)</td>
</tr>
<tr>
<td>P re p a c k <Saleback></td>
<td>0.34 (0.000)</td>
</tr>
<tr>
<td>P re p a c k <Nonpack></td>
<td>0.34 (0.000)</td>
</tr>
<tr>
<td>S aleback <Saleback></td>
<td>0.34 (0.000)</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.60 (0.000)</td>
</tr>
<tr>
<td>N</td>
<td>218</td>
</tr>
<tr>
<td>B. Total recovery rate residual ($r - r^*$)</td>
<td>0.00 (0.020)</td>
</tr>
<tr>
<td>Di s t r e s s <GC></td>
<td>0.03 (0.030)</td>
</tr>
<tr>
<td>Di s t r e s s <PL></td>
<td>0.03 (0.030)</td>
</tr>
<tr>
<td>Le v e r a g e</td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>N o of Firms</td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>F L</td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>P re p a c k</td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>S aleback</td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>P re p a c k <Saleback></td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>P re p a c k <Nonpack></td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>S aleback <Saleback></td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.12 (0.000)</td>
</tr>
<tr>
<td>N</td>
<td>218</td>
</tr>
</tbody>
</table>

Summary: liquidation preemption

- Evidence of lower prices in prepacks but not in salebacks
- The probability for a prepack:
 - Increases in asset specificity and intangibility
- The probability for a saleback:
 - Also increases in industry distress
- Is liquidation preemption risky?:
 - Examine refiling rates compared to non-prepacks
Conclusion

- Investors are pushing for auction-type procedures to resolve insolvency – against opposition
- Research support the use of auctions as a bankruptcy procedure
- A reform of U.S.-types of bankruptcy codes towards greater reliance on auctions is likely to enhance economic efficiency
Agenda

- Auction as a bankruptcy process
- **Systemically important financial institutions**
- Banking system bailout – Scandinavian style

What’s different about banks?

- A “bank” is a state/federal authorized “franchise” – not a “corporation” – often holding separate legal entities:
 - Depositary bank
 - Commodity broker/derivatives dealer
 - Futures commission merchant
 - Insurance company
 - Delaware corporations
 - Foreign corporations

- U.S. Bankruptcy Code does not address insolvency of banks, savings and loans, and credit unions
U.S. failed bank resolution authorities

- Depositary banks
 - FDIC acts as conservator/receiver (ResolutionTrust Corporation) - and typically uses auction

- Insurance companies
 - State insurance regulators

- Stockbrokers and commodity brokers (broker-dealers)
 - Securities Investor Protection Corporation (and Ch. 7)
 - Lehman: Brokerage accounts transferred to Barcaly’s

Qualified financial contracts (QFC)

- Mostly derivatives, swaps and repos

- Protected from the automatic stay provisions of the FDI Act and the U.S. bankruptcy code
 - Counterparties permitted to enforce default and termination provisions and to liquidate collateral
 - Remaining shortfall constitutes unsecured claim against bankruptcy estate

- The safe harbor of QFC helps reduce counterparty risk by promoting orderly netting-out and replacement transactions
Counterparty reputation of dealer banks

- The one factor which allows dealer banks to collateralize derivative positions using over-night cash deposits (repos)

- Probably impossible to prevent client/counterparty “run” from a bank whose reputation is in weakened
 - Neither deposit insurance nor stay of claims work here

- Prior to their collapse in 2008, neither Bear Stearns nor Lehman Brothers dared reveal their liquidity problems by borrowing openly from Federal facilities – set up at that time precisely for the purpose of lowering counterparty risk

Contingent reverse convertibles: A solution?

- Subordinated debt instrument where the *issuer* (bank) has the option to force conversion into its own (newly issued) equity

- Raises core Tier 1 capital on a contingent basis

- BUT: Does not lead to capital infusion – only reduces leverage

- What should be the trigger?
 - Some suggest a declaration by the Fed of a systemic crisis
 - But then it is probably already too late
 - The conversion needs to take place in “good times” – how?
Reverse convertibles w/forced rights offer

- **Idea:** To force infusion of new equity from existing shareholders upon debt conversion
 - Again – conversion must take place before crisis point

- **The threat:** “Supply new equity capital – or you will be substantially diluted by convertible debtholders”

- Unresolved issues:
 - Optimal conversion trigger: Systemic component?
 - “Death spiral” from short-selling anticipating conversion?
 - Bond funds (who cannot hold equity) must sell immediately – will the market be deep enough?

Conclusions

- Existing procedures for resolving bank insolvencies relies heavily on auctions and are therefore typically more efficient than corporate bankruptcy procedures (Ch. 11)

- It is unclear that current capital reserve requirements (even Basel III) is sufficient to hedge against the type of “rapid-fire” insolvency characterizing the deterioration of counterparty risk

- It is unclear that the idea of banks relying on reverse convertible securities to avoid default is a superior solution to outright forced auction
Agenda

- Auction as a bankruptcy process
- Systemically important financial institutions
- **Banking system bailout – Scandinavian style**

Common path to banking crises

- More than 100 banking crises internationally over the past 40 years
- Path to crisis remarkably similar across countries with very different governance/political systems
 - Relaxation of bank lending standards
 - Household leverage increases – housing market heats up
 - Financial system fragility – exposed to exogenous economic shocks
- Also the path in Scandinavia late 1980s/early 1990s
Figure 1: Annual percent growth in nominal lending by parent banks in Norway, Sweden and Finland, 1981-1996.

Figure 2: Annual percent household savings rate (in percent of disposable income) in Norway, Sweden and Finland, 1980-1995.
Figure 3: Annual commercial real estate price indices for Oslo (1981=100) and Stockholm (1983=100).

Figure 4: Annual percent bank capital reserves (in percent of year-end total assets) for commercial banks in Norway, Sweden and Finland, 1980-1999.
Two different bailout strategies

- Norway:
 - Placed the largest commercial bank in receivership (zeroed out old equity)
 - Infused taxpayer funds into the bank using a type of preferred equity capital
 - “Owner of last resort”

- Sweden:
 - Issued a system-wide debt guarantee
 - Purchased equity control in the third-largest bank
 - Spun off non-performing loans into a “bad bank”

Government as “owner of last resort”

- Scandinavian experience with government bailout appears to be positive for taxpayers
 - IMF estimates overall bailout cost to be close to zero for taxpayers in both Norway and Sweden

- Norway made sure that existing equity was zeroed out BEFORE the taxpayer bailout
 - But subordinated debt got a windfall

- Sweden successful in its implementation of the “bad bank”
 - But here equity-holders also got a windfall
Figure 5a: Annual percent profits before tax (in percent of total assets) for commercial banks in Norway, Sweden and Finland, 1980-99

Figure 5b: Annual percent profits before tax (in percent of total assets) for savings banks in Norway, Sweden and Finland, 1980-99
Conclusions

- Using the government to bail out systemically important financial institutions may be efficient
 - Need to clarify definition of “systemically important”
 - Bailout terms must be at least as demanding as if the funds came from the private sector (which refused)
 - Control rights
 - Upside participation
 - Superpriority
 - Government ownership must be temporary (covering the turnaround period only) and it must follow best governance practices (shareholder oriented)