Merger Negotiations with Stock Market Feedback

Sandra Betton, Concordia University
B. Espen Eckbo, Dartmouth College
Rex Thompson, Southern Methodist University
Karin Thorburn, Norwegian School of Economics

Third Paris Spring Corporate Finance Conference, May 20, 2011
Figure 1: Information arrival process in event time.

Bid event: day -1 and +1. Target receives initial bid. Market revalues target to reflect the expected final bid premium V_P, creating a markup of $V_P - V_R$

Runup period: day -42 to -2. Market receive a signal, s, of synergy gains and revises probability p of takeover, creating a target stock price runup of V_R

Pre-runup period: < day -42. Synergies in takeover perceived as negligible by the market

Betton, Eckbo, Thompson and Thorburn (2011)
Information environment

- Market receives signal s about synergy gains S.
- S known to bidder and target. Market knows only the distribution over S given the signal.
- Negotiations establishes a sharing rule θ for S and γ for bidding cost C.
- Rational bidding threshold: $K = \frac{\gamma C}{\theta}$.
- Target benefit function: $B(S, C) (= 0$ when $S < K)$.
- Prior takeover probability $\pi(0)$ and prior target stock price normalized to zero.
Rational market pricing conditional on the rumor s:

- Target runup prior to the first bid announcement:

$$V_R = \pi(s) E_s[B(S, C) | s, bid] = \int_{K}^{\infty} B(S, C) g(S | s) dS \quad (1)$$

- Expected final offer and markup at first bid announcement:

$$V_P = E_s[B(S, C) | s, bid] = \frac{1}{\pi(s)} V_R \quad (2)$$

$$V_P - V_R = \frac{1 - \pi(s)}{\pi(s)} V_R \quad (3)$$
Figure 2A: Target revaluations under deal anticipation.

Expected change in target valuations during the runup (V_R), throughout the entire bid process (V_P), and the expected markup ($V_P - V_R$)

Benefit function has target and bidder equally sharing synergy gains. Bidder bears a larger share of bid costs. Uncertainty in the signal, s, is uniform. Expected markup hits zero when deal is perfectly anticipated.
Figure 2B: Markup projections under deal anticipation.

Projection of $V_P - V_R$ on V_R

Benefit function has target and bidder equally sharing synergy gains. Bidder bears a larger share of bid costs. Uncertainty in the signal, s, is uniform. Projection hits zero when deal is perfectly anticipated.

Betton, Eckbo, Thompson and Thorburn (2011)
Adding a known target stand-alone value change T

- Target runup:

\[V_{RT} = \pi(s)E_s[B(S, C) + T|s, bid] + [1-\pi(s)]T = V_R + T \] (4)

- Expected final offer and markup at first bid announcement:

\[V_{PT} = E_s[B(S, C) + T|s, bid] = V_P + T \] (5)

\[V_{PT} - V_{RT} = \frac{1 - \pi(s)}{\pi(s)}[V_{RT} - T] \] (6)
Figure 3: Markup projections with stand-alone change T in runup. Solid line (Avg.): vertical markup summation across different Ts
Figure 4B: Markup projections with runup feedback

B: Valuation changes with transfer of runup

Revisions in target Valuation
Synergy signal s

\[\Pi(s) = 1. \]

"Betton, Eckbo, Thompson and Thorburn (2011)"
Deal anticipation with runup fed back into the offer price

Proposition 3: The hypothesis that runups caused by deal anticipation are transferred from bidders to targets is rejected by a zero or negative average relation between markups and runups.
Table 3: Nonlinear projections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_P - V_R$</td>
<td>V_R</td>
<td>$V_P - V_R = a + bV_R$</td>
<td>0.030</td>
<td>0.015</td>
</tr>
<tr>
<td>Total markup</td>
<td>Total runup</td>
<td>a = 0.36</td>
<td>b = -0.24</td>
<td>(-11.9)</td>
</tr>
<tr>
<td>$\frac{OP}{P_{-2}} - 1$</td>
<td>$\frac{P_{-2}}{P_{-42}} - 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total markup</td>
<td>Total runup</td>
<td>a = 0.36</td>
<td>b = -0.22</td>
<td>(-10.1)</td>
</tr>
<tr>
<td>$\frac{OP}{P_{-2}} - 1$</td>
<td>$\frac{P_{-2}}{P_{-42}} - 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected markup</td>
<td>Total runup</td>
<td>a = 0.31</td>
<td>b = -0.17</td>
<td>(-9.5)</td>
</tr>
<tr>
<td>$\pi[\frac{OP}{P_{-2}} - 1]$</td>
<td>$\frac{P_{-2}}{P_{-42}} - 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Betton, Eckbo, Thompson and Thorburn (2011)
Figure 2B: Markup projections under deal anticipation.

Projection of $V_P - V_R$ on V_R

Benefit function has target and bidder equally sharing synergy gains. Bidder bears a larger share of bid costs. Uncertainty in the signal, s, is uniform. Projection hits zero when deal is perfectly anticipated.
Figure 5A: Empirical markup projections (using offer prices)
Figure 6A: Projections of bidder gains on target runup without feedback

A: Bidder does not transfer runup V_R to target
Figure 6B: Projections of bidder gains on target runup with feedback and rational bidding

B: Bidder transfers V_R to the target but bids only on beneficial deals (alters the bid threshold K)

Bidder expected benefit, ν_P

Target Runup, V_R
Figure 6C: Projections of bidder gains on target runup with feedback but not rational bidding

C: Bidder transfers V_R to the target but does not alter the bid threshold K (suboptimal behavior).
<table>
<thead>
<tr>
<th>Dep var: Bidder CAR[-42,1]</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.116</td>
<td>-0.116</td>
<td>-0.110</td>
<td>-0.114</td>
<td>-0.097</td>
<td>-0.099</td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td>(0.102)</td>
<td>(0.979)</td>
<td>(0.102)</td>
<td>(0.486)</td>
<td>(0.288)</td>
</tr>
<tr>
<td>Total Target Runup</td>
<td>0.049</td>
<td>0.054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_R = \frac{P_{-2}}{P_{-42}} - 1$</td>
<td>(0.006)</td>
<td>(0.003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Target Runup</td>
<td>0.078</td>
<td>0.082</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{RT} = \frac{P_{-2}}{P_{-42}} - \frac{M_{-2}}{M_{-42}}$</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmented Target Runup</td>
<td>0.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_R = (\frac{P_{-2}}{P_{-42}} - 1) + R_0$</td>
<td>(0.006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Model Target Runup</td>
<td>0.148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{RT} = CAR(-42,2)$</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control variables</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.019</td>
<td>0.025</td>
<td>0.019</td>
<td>0.049</td>
<td>0.043</td>
<td>0.049</td>
</tr>
<tr>
<td>N</td>
<td>3,691</td>
<td>3,689</td>
<td>3,660</td>
<td>3,691</td>
<td>3,624</td>
<td>3,623</td>
</tr>
</tbody>
</table>
Figure 6A: Projections of bidder gains on target runup without feedback

A: Bidder does not transfer runup V_R to target

Betton, Eckbo, Thompson and Thorburn (2011)
Figure 7A: Bidder gain on target runup

A: Projections of Bidder Market Model CAR(-42, 1) target runup

Best Linear Fit
Best Fit of Flexible Form
Raw Data

Target Runup from day -42 to day -2

Betton, Eckbo, Thompson and Thorburn (2011)
Conclusions: We show that...

• With deal anticipation, projection of markups on runups is nonlinear
• Empirical projections are nonlinear and consistent with deal anticipation in the runup
• Empirical projections are inconsistent with a transfer of the target runup to the target
• Projections of bidder gains on target runup yield positive slope, as predicted under deal anticipation
• Bidders raise the offer price with the market runup prior to the initial bid
• Toehold acquisitions in the runup period fuel runups but lowers offer premiums