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Abstract

Corporate finance decisions are not made at random, but are usually deliberate decisions by firms or their

managers to self-select into their preferred choices. This chapter reviews econometric models of self-selection.

The review is organized into two parts. The first part reviews econometric models of self-selection, focusing

on the key assumptions of different models and the types of applications they may be best suited for. Part

two reviews empirical applications of selection models in the areas of corporate investment, financing, and

financial intermediation. We find that self-selection is a rapidly growing area in corporate finance, partly

reflecting its recognition as a pervasive feature of corporate finance decisions, but more importantly, the

increasing recognition of selection models as unique tools for understanding, modeling, and testing the role

of private information in corporate finance.
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Introduction

Corporate finance concerns the financing and investment choices made by firms and a broad

swathe of decisions within these broad choices. For instance, firms pick their target capital structure,

and to achieve the target, must make several choices including issue timing of security issues,

structural features of the securities issued, the investment bank chosen to underwrite it, and so on.

These choices are not usually random, but are deliberate decisions by firms or their managers to

self-select into their preferred choices. This chapter reviews econometric models of self-selection.

We review the approaches used to model self-selection in corporate finance and the substantive

findings obtained by implementing selection methods.

Self-selection has a rather mixed history in corporate finance. The fact that there is self-

selection is probably not news; indeed, many papers at least implicitly acknowledge its existence.

However, the literature differs on whether to account for self-selection using formal econometric

methods, and why one should do so. One view of self-selection is that it is an errant nuisance, a

“correction” that must be made to prevent other parameter estimates from being biased. Selection

is itself of little economic interest under this view. In other applications, self-selection is itself

of central economic interest, because models of self-selection represent one way of incorporating

and controlling for unobservable private information that influences corporate finance decisions.

Both perspectives find expression in the literature, although an increasing emphasis in recent work

reflects the positive view in which selection models are used to construct interesting tests for private

information.

Our review is organized into two parts. Part I focuses on econometric models of self-selection.

We approach selection models from the viewpoint of a corporate finance researcher who is im-

plementing selection models in an empirical application. We formalize the notion of self-selection

and overview several approaches towards modeling it, including reduced form models, structural

approaches, matching methods, fixed effect estimators, and Bayesian methods. As the discussion

clarifies, the notion of selection is not monolithic. No single model universally models or accounts

for all forms of selection, so there is no one “fix” for selection. Instead, there are a variety of

approaches, each of which makes its own economic and statistical assumptions. We focus on the

substantive economic assumptions underlying the different approaches to illustrate what each can

and cannot do and the type of applications a given approach may be best suited for. We do not say
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much on estimation, asymptotic inference, or computational issues, but refer the reader to excellent

texts and articles on these matters.

Part II of our review examines corporate finance applications of self-selection models. We cover

a range of topics such as mergers and acquisitions, stock splits, equity offerings, underwriting,

analyst behavior, share repurchases, and venture capital. Our objective is to illustrate the wide

range of corporate finance settings in which selection arises and the different econometric approaches

employed in modeling it. Here, we focus on applications published in the last decade or so, and on

articles in which self-selection is a major component of the overall results.2

I. Modeling self-selection

This portion of our review discusses econometric models of self-selection. Our intention is not

to summarize the entire range of available models and their estimation. Rather, we narrow our

focus to models that have been applied in the corporate finance literature, and within these models,

we focus on the substantive assumptions made by each specification. From the viewpoint of the

empirical researcher, this is the first order issue in deciding what approach suits a given application

in corporate finance. We do not touch upon asymptotic theory, estimation, and computation.

These important issues are well covered in excellent textbooks.3

We proceed as follows. Section 1 describes the statistical issue raised by self-selection, the

wedge between the population distribution and the distribution within a selected sample. Sections

2 to 6 develop the econometric models that can address selection. Section 2 discusses a baseline

model for self-selection, the “Heckman” selection model analyzed in Heckman (1979), a popular

modeling choice in corporate finance.4 We discuss identification issues related to the model, which

are important but not frequently discussed or justified explicitly in corporate finance applications.

Because the Heckman setting is so familiar in corporate finance, we use it to develop a key point

2Our attempt is to capture the overall flavor of self-selection models as they stand in corporate finance as of the

writing. We apologize to any authors whose work we have overlooked: no slight is intended.

3The venerable reference, Maddala (1983), continues to be remarkably useful, though its notation is often (and

annoyingly, to the empirical researcher) different from that used in other articles and software packages. Newer

material is covered in Wooldridge (2002) and Greene (2004).

4Labeling any one model as “the” Heckman model surely does disservice to the many other contributions of James

Heckman. We choose this label following common usage in the literature.
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of this survey, the analogy between econometric models of self-selection and private information

models in corporate finance. Section 3 considers switching regressions and structural self-selection

models. While these models generalize the Heckman selection model in some ways, they also bring

additional baggage in terms of economic and statistical assumptions that we discuss.

We then turn to other approaches towards modeling selection. Section 4 discusses matching

models, which are methods du jour in the most recent applications. The popularity of matching

models can be attributed to their relative simplicity, easy interpretation of coefficients, and minimal

structure with regard to specification. However, these gains come at a price. Matching models make

the strong economic assumption that unobservable private information is irrelevant. This assump-

tion may not be realistic in many corporate finance applications. In contrast, selection models

explicitly model and incorporate private information. A second point we develop is that while

matching methods are often motivated by the fact that they yield easily interpretable treatment

effects, selection methods also estimate treatment effects with equal ease. Our review of method-

ology closes by briefly touching upon fixed effect models in Section 5 and Bayesian approaches to

selection in Section 6.

1 Self-Selection: The statistical issue

To set up the self-selection issue, assume that we wish to estimate parameters β of the regression

Yi = Xiβ + εi (1)

for a population of firms. In Eq. (1), Yi is the dependent variable, which is typically an outcome

such as profitability or return. The variables explaining outcomes are Xi, and the error term is

εi. If εi satisfies usual classical regression conditions, standard OLS/GLS procedures consistently

estimate β.

Now consider a sub-sample of firms who self-select choice E. For this sub-sample, Eq. (1) can

be written as

Yi | E = Xiβ + εi | E (2)

The difference between Eqs. (2) and (1) is at the heart of the self-selection problem. Eq. (1)

is a specification written for the population but Eq. (2) is written for a subset of firms, those
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that self-select choice E. If self-selecting firms are not random subsets of the population, the usual

OLS/GLS estimators applied to Eq. (2), are no longer consistent estimators of β.

Accounting for self-selection consists of two steps. Step 1 specifies a model for self-selection,

using economic theory to model why some firms select E while others do not. While this specifi-

cation step is not often discussed extensively in applications, it is critical because the assumptions

involved ultimately dictate what econometric model should be used in the empirical application.

Step 2 ties the random variable(s) driving self-selection to the outcome variable Y .

2 The baseline Heckman selection model

2.1 The econometric model

Early corporate finance applications of self-selection are based on the model analyzed in Heckman

(1979). We spend some time developing this model because most other specifications used in the

finance literature can be viewed as extensions of the Heckman model in various directions.

In the conventional perspective of self-selection, the key issue is that we have a regression such

as Eq. (1) that is well specified for a population but it must be estimated using sub-samples of firms

that self-select into choice E. To estimate population parameters from self-selected subsamples, we

first specify a self-selection mechanism. This usually takes the form of a probit model in which firm

i chooses E if the net benefit from doing so, a scalar Wi, is positive. Writing the selection variable

Wi as a function of explanatory variables Zi, which are assumed for now to be exogenous,5 we have

the system

C = E ≡ Wi = Ziγ + ηi > 0 (3)

C = NE ≡ Wi = Ziγ + ηi ≤ 0 (4)

Yi = Xiβ + εi (5)

where Zi denotes publicly known information influencing a firm’s choice, γ is a vector of probit

coefficients, and ηi is orthogonal to public variables Zi. In the standard model, Yi is observed only

5Thus, we preclude for now the possibility that Z includes the outcome variable Y . This restriction can be relaxed

at a cost, as we show in later sections.
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when a firm picks one of E or NE (but not both), so Eq. (5) would require the appropriate con-

ditioning. Assuming that ηi and εi are bivariate normal, the likelihood function and the maximum

likelihood estimators for Eqs. (3)-(5) follow, although a simpler two-step procedure (Heckman

(1979), and Greene (1981)) is commonly used for estimation. Virtually all applied work is based

on the bivariate normal structure discussed above.

2.2 Self-selection and private information

In the above setup, self-selection is a nuisance problem. We model it because not doing so leads

to inconsistent estimates of parameters β in regression Eq. (1). Self-selection is, by itself, of

little interest. However, this situation is frequently reversed in corporate finance, because tests

for self-selection can be viewed as tests of private information theories. We develop this point

in the context of the Heckman (1979) model outlined above, but we emphasize that this private

information interpretation is more general.

We proceed as follows. Following a well-established tradition in econometrics, Section 2.2.1

presents selection as an omitted variable problem. Section 2.2.2 interprets the omitted variable

as a proxy for unobserved private information. Thus, including the omitted self-selection variable

controls for and tests for the significance of private information in explaining ex-post outcomes of

corporate finance choices.

2.2.1 Selection: An omitted variable problem

Suppose that firm i self-selects choice E. For firm i, we can take expectations of Eq. (5) and write

Yi | E = Xiβ + (εi | Ziγ + ηi > 0) (6)

= Xiβ + π(ηi|Ziγ + ηi > 0) + νi (7)

Eq. (7) follows from the standard result that εi|ηi = πηi + νi where π is the coefficient in the

regression of εi on ηi, and νi is an orthogonal zero-mean error term.6 Given the orthogonality and

zero-mean properties of νi, we can take expectations of Eq. (7) and obtain the regression model

E(Yi|E) = Xiβ + πE(ηi|Ziγ + ηi > 0) (8)

6Note that π = ρηεσε where ρηε is the correlation between ε and η, and σ2
ε is the variance of ε.
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and a similar model for firms choosing not to announce E,

E(Yi|NE) = Xiβ + πE(ηi|Ziγ + ηi ≤ 0) (9)

Eqs. (8)-(9) can be compactly rewritten as

E(Yi|C) = Xiβ + πλC(Ziγ) (10)

where C ∈ {E,NE} and λC(.) is the conditional expectation of ηi given C. In particular, if

η and ε are bivariate normal, as is standard in the bulk of the applied work, λE(.) = φ(.)
Φ(.) and

λNE(.) = − φ(.)
1−Φ(.) (Greene (2003), p. 759).

A comparison of Eq. (1) and Eq. (10) clarifies why self-selection is an omitted variable problem.

In the population regression in Eq. (1), regressing outcome Y on X consistently estimates β.

However, in self-selected samples, consistent estimation requires that we include an additional

variable, the inverse Mills ratio λC(.). Thus, the process of correction for self-selection can be

viewed as including an omitted variable.

2.2.2 The omitted variable as private information

In the probit model Eqs. (3)-(4), ηi is the part of Wi not explained by public variables Zi. Thus, ηi

can be viewed as the private information driving the corporate financing decision being modeled.

The ex-ante expectation of ηi should be zero, and it is so, given that it has been defined as an error

term in the probit model.

Ex-post after firm i selects C ∈ {E, NE}, the expectations of ηi can be updated. The revised

expectation, E(ηi | C), is thus an updated estimate of the firm’s private information. If we wished

to test whether the private information in a firm’s choice affected post-choice outcomes, we would

regress outcome Y on E(ηi | C). But E(ηi|C) = λC(.) is the inverse Mills ratio term that we add

anyway to adjust for self-selection. Thus, correcting for self-selection is equivalent to testing the

private information. The omitted variable used to correct for self-selection, λC(.), is an estimate of

the private information underlying a firm’s choice and testing its significance is a test of whether

private information possessed by a firm explains ex-post outcomes. In fact, a two-step procedure

most commonly used to estimate selection models follows this logic.7

7Step 1 estimates the probit model Eqs. (3)-(4) to yield estimates of γ, say γ̂, and hence the private information

function λC(Ziγ̂). In step 2, we substitute the estimated private information in lieu of its true value in Eq. (10) and
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Our main purpose of incorporating the above discussion of the Heckman model is to highlight

the dual nature of self-selection “corrections.” One can think of them as a way of accounting for

a statistical problem. There is nothing wrong with this view. Alternatively, one can interpret

self-selection models as a way of testing private information hypotheses, which is perhaps an eco-

nomically more useful perspective of selection models in corporate finance. Selection models are

clearly useful if private information is one’s primary focus, but even if not, the models are useful

as means of controlling for potential private information effects.

2.3 Specification issues

Implementing selection models in practice poses two key specification issues: the need for exclusion

restrictions and the assumption that error terms are bivariate normal. While seemingly innocuous,

these issues, particularly the exclusion question, are often important in empirical applications, and

deserve some comment.

2.3.1 Exclusion restrictions

In estimating Eqs. (3)-(5), researchers must specify two sets of variables: those determining selec-

tion (Z) and those determining the outcomes (X). An issue that comes up frequently is whether

the two sets of variables can be identical. This knotty issue often crops up in practice. For instance,

consider the self-selection event E in Eqs. (3)-(4) as the decision to acquire a target and suppose

that the outcome variable in Eq. (5) is post-diversification productivity. Variables such as firm size

or the relatedness of the acquirer and the target could explain the acquisition decision. The same

variables could also plausibly explain the ex-post productivity gains from the acquisition. Thus,

these variables could be part of both Z and X in Eqs. (3)-(5). Similar arguments can be made for

several other explanatory variables: they drive firms’ decision to self-select into diversification and

the productivity gains after diversification. Do we need exclusion restrictions so that there is at

least one variable driving selection, an instrument in Z that is not part of X?

Strictly speaking, exclusion restrictions are not necessary in the Heckman selection model be-

cause the model is identified by non-linearity. The selection-adjusted outcome regression Eq. (10)

estimate it by OLS. Standard errors must be corrected for the fact that γ is estimated in the second step, along the

lines of Heckman (1979), Greene (1981), and Murphy and Topel (1985).
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regresses Y on X and λC(Z ′γ). If λC(.) were a linear function of Z, we would clearly need some

variables in Z that are not part of X or the regressors would be collinear.8 However, under the

assumption of bivariate normal errors, λC(.) is a non-linear function. As Heckman and Navarro-

Lozano (2004) note, collinearity between the outcome regression function (here and usually the

linear function Xiβ) and the selection “control” function λC(.) is not a generic feature, so some

degree of non-linearity will probably allow the specification to be estimated even when there are

no exclusion restrictions.

In practice, the identification issue is less clear cut. The problem is that while λC(.) is a

non-linear function, it is roughly linear in parts of its domain. Hence, it is entirely possible that

λC(Z ′γ) has very little variation relative to the remaining variables in Eq. (10), i.e., X. This issue

can clearly arise when the selection variables Z and outcome variables X are identical. However,

it is important to realize that merely having extra instruments in Z may not solve the problem.

The quality of the instruments also matters. Near-multicollinearity could still arise when the extra

instruments in Z are weak and have limited explanatory power.

What should one do if there appears to be a multicollinearity issue? It is tempting to recommend

that the researcher impose additional exclusion restrictions so that self-selection instruments Z

contain unique variables not spanned by outcome variables X. Matters are, of course, a little more

delicate. Either the exclusions make sense, in which case these should have been imposed in the

first place. Alternatively, the restrictions are not reasonable, in which case it hardly makes sense

to force them on a model merely to make it estimable. In any event, as a practical matter, it

seems reasonable to always run diagnostics for multicollinearity while estimating selection models

whether one imposes exclusion restrictions or not.

The data often offer one degree of freedom that can be used to work around particularly thorny

cases of collinearity. Recall that the identification issue arises mainly because of the 1/0 nature of

the selection variable Wi, which implies that we do not observe the error term ηi and we must take

its expectation, which is the inverse Mills ratio term. However, if we could observe the magnitude

of the selection variable Wi, we would introduce an independent source of variation in the selection

8In this case, having a variable in X that is not part of Z does not help matters. If λC(.) is indeed linear, it is

spanned by X whenever Z is spanned by X. Thus, we require extra variables that explain the decision to self-select

but are unrelated to the outcomes following self-selection.
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correction term and in effect observe the private information ηi itself and use it in the regression

in lieu of the inverse Mills ratio. Exclusion restrictions are no longer needed. This is often more

than just a theoretical possibility. For instance, in analyzing a sample of firms that have received

a bank loan, we do observe the bank loan amount conditional on a loan being made. Likewise, in

analyzing equity offerings, we observe the fact that a firm made an equity offering and also the size

of the offer. In hedging, we do observe (an estimate of) the extent of hedging given that a firm has

hedged. This introduces an independent source of variation into the private information variable,

freeing one from the reliance on non-linearity for identification.

2.3.2 Bivariate normality

A second specification issue is that the baseline Heckman model assumes that errors are bivariate

normal. In principle, deviations from normality could introduce biases in selection models, and these

could sometimes be serious (for an early illustration, see Goldberger (1983)). If non-normality is an

issue, one alternative is to assume some specific non-normal distribution (Lee (1982), and Maddala

(1983), Chapter 9.3). The problem is that theory rarely specifies a particular alternative distribution

that is more appropriate. Thus, whether one uses a non-normal distribution and the type of the

distribution should be used are often driven by empirical features of the data. One approach that

works around the need to specify parametric structures is to use semi-parametric methods (e.g.,

Newey, Powell and Walker (1990)). Here, exclusion restrictions are necessary for identification.

Finance applications of non-normal selection models remain scarce, so it is hard at this point

of time to say whether non-normality is a first order issue deserving particular attention in finance.

In one application to calls of convertible bonds (Scruggs (2006)), the data were found to be non-

normal, but non-normality made little difference to the major conclusions.

3 Extensions

We review two extensions of the baseline Heckman self-selection model, switching regressions and

structural selection models. The first allows some generality in specifying regression coefficients

across alternatives, while the second allows bidirectional simultaneity between self-selection and
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post-selection outcomes.9 Each of these extensions generalizes the Heckman model by allowing some

flexibility in specification. However, it should be emphasized that the additional flexibility that is

gained does not come for free. The price is that the alternative approaches place additional demands

on the data or require more stringent economic assumptions. The plausibility and feasibility of these

extra requirements should be carefully considered before selecting any alternative to the Heckman

model for a given empirical application.

3.1 Switching regressions

As in Section 2, a probit model based on exogenous variables drives firms’ self-selection decisions.

The difference is that the outcome is now specified separately for firms selecting E and NE, so the

single outcome regression Eq. (5) in system Eqs. (3)-(5) is now replaced by two regressions. The

complete model is as follows

C = E ≡ Ziγ + ηi > 0 (11)

C = NE ≡ Ziγ + ηi ≤ 0 (12)

YE,i = XE,iβE + εE,i (13)

YNE,i = XNE,iβNE + εNE,i (14)

where C ∈ {E, NE}. Along with separate outcome regression parameter vectors βE and βNE ,

there are also two covariance coefficients for the impact of private information on outcomes, the

covariance between private information η and εE and that between η and εNE . Two-step estimation

is again straightforward, and is usually implemented assuming that the errors {ηi, εE,i, εNE,i} are

trivariate normal.10

9For instance, in modeling corporate diversification as a decision involving self-selection, structural models would

allow self-selection to determine post-diversification productivity changes, as in the standard setup, but also allow

anticipated productivity changes to impact the self-selection decision.

10Write Eqs. (13)-(14) in regression form as

YC,i = XC,iβC + πCλC(Ziγ) (15)

where C ∈ {E, NE}. The two-step estimator follows: the probit model Eqs. (11)-(12) gives estimates of γ and

hence the inverse Mills ratio λC(.), which is fed into regression Eq. (15) to give parameters {βE , βNE , πE , πNE}.
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Given the apparent flexibility in specifying two outcome regressions, Eqs. (13)-(14) compared

to the one outcome regression in the standard selection model, it is natural to ask why we do not

always use the switching regression specification. There are three issues involved. First, theory

should say whether there is a single population regression whose LHS and RHS variables are

observed conditional on selection, as in the Heckman model, or whether we have two regimes in the

population and the selection mechanism dictates which of the two we observe. In some applications,

the switching regression is inappropriate: for instance, it is not consistent with the equilibrium

modeled in Acharya (1988). A second issue is that the switching regression model requires us to

observe outcomes of firms’ choices in both regimes. This may not always be feasible because we

only observe outcomes of firms self-selecting E but have little data on firms that choose not to

self-select. For instance, if we were analyzing stock market responses to merger announcements as

in Eckbo, Maksimovic and Williams (1990), implementing switching models literally requires us to

obtain a sample of would-be acquirers that had never announced to the market and the market

reaction on the dates that the markets realize that there is no merger forthcoming. These data may

not always be available (Prabhala (1997)).11 A final consideration is statistical power: imposing

restrictions such as equality of coefficients {β, π} for E and NE firms (when valid), lead to greater

statistical power.

A key advantage of the switching regression framework is that we obtain more useful estimates

of (unobserved) counterfactual outcomes. Specifically, if firm i chooses E, we observe outcome YE,i.

However, we can ask what the outcome might have been had firm i chosen NE, the unobserved

counterfactual, and what the gain is from firm i’s having made choice E rather than NE. The

switching regression framework provides an estimate. The net benefit from choosing E is the

outcome of choosing E less the counterfactual had it chosen NE, i.e., YE,i−YNE,i = YE,i−XiβNE−

πNEλNE(Ziγ). The expected gain for firm i is Xi(βE−βNE)+(πEλE(.)−πNEλNE(.)).12 We return

As before, standard errors in the second step regression require adjustment because λC(Zγ̂) is a generated regressor

(Maddala (1983), pp. 226-227).

11Li and McNally (2004) and Scruggs (2006) describe how we can use Bayesian methods to update priors on

counterfactuals. More details on their approach are given in Section 6.

12This expression stands in contrast to the basic Heckman setup. There, in Eq. (9), βE = βNE and πE = πNE , so

the expected difference is π(λE(.)− λNE(.)). There, the sign of the expected difference is fixed: it must equal to the

sign of π because (λE(.)− λNE(.)) > 0. Additionally, the expected difference in the setup of Section 2 does not vary
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to the counterfactuals issue when we deal with treatment effects and propensity scores. We make

this point at this stage only to emphasize that selection models do estimate treatment effects. This

fact is often not apparent when reading empirical applications, especially those employing matching

methods.

3.2 Simultaneity in self-selection models

The models considered thus far presume that the variables Z explaining the self-selection decision

(Eqs. (3)-(4) or Eqs. (11)-(12)) are exogenous. In particular, the bite of this assumption is to

preclude the possibility that the decision to self-select choice C does not directly depend on the

anticipated outcome from choosing C. This assumption is sometimes too strong in corporate finance

applications. For instance, suppose we are interested in studying the diversification decision and

that the outcome variable to be studied is firm productivity. The preceding models would assume

that post-merger productivity does not influence the decision to diversify. If firms’ decisions to

diversify depend on their anticipated productivity changes, as theory might suggest (Maksimovic

and Phillips (2002)), the assumption that Z is exogenous is incorrect.

The dependence of the decision to self-select on outcomes and the dependence of outcomes

on the self-selection decision is essentially a problem of simultaneity. Structural selection models

can account for simultaneity. We review two modeling choices. The Roy (1951) model places few

demands on the data but it places tighter restrictions on the mechanism by which self-selection

occurs. More elaborate models are less stringent on the self-selection mechanism, but they demand

more of the data, specifically instruments, exactly as in conventional simultaneous equations models.

3.2.1 The Roy model

The Roy model hard-wires the dependence of self-selection on post-selection outcomes. Firms self-

select E or NE depending on which of the two alternatives yields the higher outcome. Thus, {E,

YE} is observed for firm i if YE,i > YNE,i. If, on the other hand, YNE,i ≥ YE,i, we observe {NE,

with β or variables X that are not part of Z: here, it does. In short, the counterfactual choices that could be made

but were not are less constrained in the switching regression setup.
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YNE,i}. The full model is

C = E ≡ YE,i > YNE,i (16)

C = NE ≡ YE,i ≤ YNE,i (17)

YE,i = XiβE + εE,i (18)

YNE,i = XiβNE + εNE,i (19)

where the ε’s are (as usual) assumed to be bivariate normal. The Roy model is no more demanding

of the data than standard selection models. Two-step estimation is again fairly straightforward

(Maddala (1983), Chapter 9.1).

The Roy selection mechanism is rather tightly specified on two dimensions. One, the model

exogenously imposes the restriction that firms selecting E would experience worse outcomes had

they chosen NE and vice versa. This is often plausible. However, it is unclear whether this should

be a hypothesis that one wants to test or a restriction that one imposes on the data. Two, the

outcome differential is the only driver of the self-selection decision in the Roy setup. Additional

flexibility can be introduced by loosening the model of self-selection. This extra flexibility is allowed

in models to be described next, but it comes at the price of requiring additional exclusion restrictions

for model identification.

3.2.2 Structural self-selection models

In the standard Heckman and switching regression models, the explanatory variables in the selection

equation are exogenous. At the other end of the spectrum is the Roy model of Section 3.2.1, in

which self-selection is driven solely by the endogenous variable. The interim case is one where

selection is driven by both exogenous and outcome variables. This specification is

C = E ≡ Ziγ + δ(YE,i − YNE,i) + ηi > 0 (20)

C = NE ≡ Ziγ + δ(YE,i − YNE,i) + ηi ≤ 0 (21)

YE,i = XiβE + εE,i (22)

YNE,i = XiβNE + εNE,i (23)

The structural model generalizes the switching regression model of Section 3.1, by incorporating

the extra explanatory variable YE,i − YNE,i, the net outcome gain from choosing E over NE, in
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the selection decision, and generalizes the Roy model by permitting exogenous variables Zi to enter

the selection equation. Estimation of the system Eqs. (20)-(23) follows the route one typically

treads in simultaneous equations systems estimation—reduced form estimation followed by a step

in which we replace the dependent variables appearing in the RHS by their fitted projections. A

trivariate normal assumption is standard (Maddala (1983), pp. 223-239). While structural self-

selection models have been around for a while in the labor economics literature, particularly those

studying unionism and the returns to education (see Maddala (1983), Chapter 8), applications in

finance are of very recent origin.

The structural self-selection model clearly generalizes every type of selection model considered

before. The question is why one should not always use it. Equivalently, what additional restrictions

or demands does it place on the data? Because it is a type of the switching regression model,

it comes with all the baggage and informational requirements of the switching regression. As

in simultaneous equations systems, instruments must be specified to identify the model. In the

diversification example at the beginning of this section, the identification requirement demands

that we have at least one instrument that determines whether a firm diversifies but does not

determine the ex-post productivity of the diversifying firm. The quality of one’s estimates depends

on the strength of the instrument, and all the caveats and discussion of Section 2.3.1 apply here.

4 Matching models and self-selection

This section reviews matching models, primarily those based on propensity scores. Matching mod-

els are becoming increasingly common in applied work. They represent an attractive means of

inference because they are simple to implement and yield readily interpretable estimates of “treat-

ment effects.” However, matching models are based on fundamentally different set of assumptions

relative to selection models. Matching models assume that unobserved private information is ir-

relevant to outcomes. In contrast, unobserved private information is the essence of self-selection

models. We discuss these differences between selection and matching models as well as specific

techniques used to implement matching models.

To clarify the issues, consider the switching regression selection model of Section 3.1, but relabel

the choices to be consistent with the matching literature. Accordingly, firms are treated and belong
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to group E or untreated and belong to group NE. This assignment occurs according to the probit

model

pr (E|Z) = pr (Zγ + η) > 0 (24)

where Z denotes explanatory variables, γ is a vector of parameters and we drop firm subscript i for

notational convenience. The probability of being untreated is 1−pr (E|Z). We write post-selection

outcomes as YE for treated firms and YNE for untreated firms, and for convenience, write

YE = XEβE + εE (25)

YNE = XNEβNE + εNE (26)

where (again suppressing subscript i) εC denotes error terms, XC denotes explanatory variables,

βC denotes parameter vectors, and C ∈ {E, NE}. We emphasize that the basic setup is identical

to that of a switching regression of Section 3.1.

4.1 Treatment effects

Matching models focus on estimating treatment effects. A treatment effect, loosely speaking, is the

value added or the difference in outcome when a firm undergoes treatment E relative to not under-

going treatment, i.e., choosing NE. Selection models such as the switching regression specification

(Eqs. (11)-(14)) estimate treatment effects. Their approach is indirect. In selection models, we

estimate a vector of parameters and covariances in the selection equations and use these parameters

to estimate treatment effects. In contrast, matching models go directly to treatment effect estima-

tion, setting aside the step of estimating parameters of regression structures specified in selection

models.

The key question in the matching literature is whether treatment effects are significant. In the

system of equations Eqs. (24)-(26), this question can be posed statistically in a number of ways.

• At the level of an individual firm i, the effectiveness of a treatment can be judged by asking

whether E (YE,i − YNE,i) = 0.

• For the group of treated firms, the effectiveness of the treatment for treated firms is assessed

by testing whether the treatment effect on treated, (TT), equals zero, i.e., whether E [(YE −

YNE)|C = E] = 0.
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• For the population as a whole whether treated or not, we test the significance of the average

treatment effect (ATE) by examining whether E (YE − YNE) = 0.

The main issue in calculating any of the treatment effects discussed above, whether by selection

or matching models, is the fact that unchosen counterfactuals are not observed. If a firm i chooses E,

we observe outcome of its choice YE,i. However, because firm i chose E, we do not explicitly observe

the outcome YNE,i that would occur had the firm instead made the counterfactual choiceNE. Thus,

the difference YE,i − YNE,i is never directly observed for any particular firm i, so its expectation—

whether at the firm level, or across treated firms, or across treated and untreated firms—cannot

be calculated directly. Treatment effects can, however, be obtained via selection models or by

matching models, using different identifying assumptions. We discuss selection methods first and

then turn to matching methods.

4.2 Treatment effects from selection models

Self-selection models obtain treatment effects by first estimating parameters of the system of equa-

tions Eqs. (24)-(26). Given the parameter estimates, it is straightforward to estimate treatment

effects described in Section 4.1, as illustrated, e.g., in Section 3.1 for the switching regression model.

The key identifying assumption in selection models is the specification of the variables entering se-

lection and outcome equations, i.e., variables X and Z in Eqs. (24)-(26).

Two points deserve emphasis. The first is that the entire range of selection models discussed

in Section 2 through Section 3.2 can be used to estimate treatment effects. This point deserves

special mention because in received corporate finance applications, the tendency has been to report

estimates of matching models and as a robustness check, an accompanying estimate of a selection

model. With virtually no exception, the selection model chosen for the robustness exercise is the

Heckman model of Section 2. However, there is no a priori reason to impose this restriction—any

other model, including the switching regression models or the structural models, can be used, and

perhaps ought to at least get a hearing. The second point worth mentioning is that unlike matching

models, selection models always explicitly test for and incorporate the effect of unobservable private

information, through the inverse Mills ratio term, or more generally, through control functions that

model private information (Heckman and Navarro-Lozano (2004)).
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4.3 Treatment effects from matching models

In contrast to selection models, matching models begin by assuming that private information is

irrelevant to outcomes.13 Roughly speaking, this is equivalent to imposing zero correlation between

private information η and outcome YE in Eqs. (24)-(26).

Is irrelevance of private information a reasonable assumption? It clearly depends on the specific

application. The assumption is quite plausible if the decision to obtain treatment E is done through

an exogenous randomization process. It becomes less plausible when the decision to choose E is an

endogenous choice of the decision-maker, which is probably close to many corporate finance appli-

cations except perhaps for exogenous shocks such as regulatory changes.14 If private information

can be ignored, matching methods offer two routes to estimate treatment effects: dimension-by-

dimension matching and propensity score matching.

4.3.1 Dimension-by-dimension matching

If private information can be ignored, the differences in firms undergoing treatment E and untreated

NE firms only depend on observable attributes X. Thus, the treatment effect for any firm i

equals the difference between its outcome and the outcome for a firm j(i) that matches it on all

observable dimensions, Formally, the treatment effect equals Yi,E−Yj (i),NE , where j(i) is such that

Xi,k = Xj(i),k for all K relevant dimensions, i.e., ∀k, k = 1, 2, ...,K. Other measures such as TT

and ATE defined in Section 4.1 follow immediately.15

Dimension-by-dimension matching methods have a long history of usage in empirical corporate

finance, as explained in Chapter 1 (Kothari and Warner (2006)) in this book. Virtually all studies

routinely match on size, industry, the book-to-market ratio, and so on. The “treatment effect” is

13See, e.g., Wooldridge (2002) for formal expressions of this condition.

14Of course, even here, if unobservable information guides company responses to such shocks, irrelevance of unob-

servables is still not a good assumption.

15One could legitimately ask why we need to match dimension by dimension when we have a regression structure

such as Eqs. (25)-(26). The reason is that dimension-by-dimension matching is still consistent when the data come

from the regressions, but dimension-by-dimension matching is also consistent with other data generating mechanisms.

If one is willing to specify Eqs. (25)-(26), the treatment effect is immediately obtained as the difference between the

fitted values in the two equations.
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the matched-pair difference in outcomes. There is nothing inherently wrong with these methods.

They involve the same economic assumptions as other matching methods based on propensity scores

used in recent applications. In fact, dimension-by-dimension matching imposes less structure and

probably represents a reasonable first line of attack in typical corporate finance applications.

Matching on all dimensions and estimating the matched-pair differences in outcomes poses two

difficulties. One is that characteristics are not always exactly matched in corporate finance appli-

cations. For instance, we often match firm size or book-to-market ratios with 30% calipers. When

matches are inexact, substantial biases could build up as we traverse different characteristics being

matched. A second issue that proponents of matching methods frequently mention is dimension-

ality. When the number of dimensions to be matched goes up and the matching calipers become

fine (e.g., size and prior performance matched within 5% rather than 30%, and 4-digit rather than

2-digit SIC matches), finding matches becomes difficult or even infeasible. When dimension-by-

dimension matching is not feasible, a convenient alternative is methods based on propensity scores.

We turn to these next.

4.3.2 Propensity score (PS) matching

Propensity score (PS) matching methods handle the problems caused by dimension-by-dimension

matching by reducing it to a problem of matching on a single one: the probability of undergoing

treatment E. The probability of treatment is called the propensity score. Given a probability model

such as Eq. (24), the treatment effect equals the outcome for the treated firm minus the outcome

for an untreated firm with equal treatment probability. The simplicity of the estimator and its

straightforward interpretation makes the propensity score estimator attractive.

It is useful to review the key assumptions underlying the propensity score method. Following

Rosenbaum and Rubin (1983), suppose that the probability model in Eq. (24) satisfies

• PS1: 0 < pr(E|Z) < 1.

• PS2: Given Z, outcomes YE , YNE do not depend on whether the firm is in group E (NE).

Assumption (PS1) requires that at each level of the explanatory variable Z, some firms should

pick E and others pick NE. This constraint is frequently imposed in empirical applications by

requiring that treated and untreated firms have common support.
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Assumption (PS2) is the strong ignorability or conditional independence condition. It requires

that unobserved private information should not explain outcome differentials between firms choosing

E and those choosing NE. This is a crucial assumption. As Heckman and Navarro-Lozano (2004)

show, even fairly mild departures can trigger substantial biases in treatment effect estimates.

Given assumptions (PS1) and (PS2), Rosenbaum and Rubin (1983) show that the treatment

effect is the difference between outcomes of treated and untreated firms having identical treatment

probabilities (or propensity scores). Averaging across different treatment probabilities gives the

average treatment effect across the population.16

4.3.3 Implementation of PS methods

In light of Rosenbaum and Rubin (1983), the treatment effect is the difference between outcomes of

treated and untreated firms with identical propensity scores. One issue in implementing matching

is that we need to know propensity scores, i.e., the treatment probability pr(E|Z). This quantity

is not ex-ante known but it must be estimated from the data, using, for instance, probit, logit,

or other less parametrically specified approaches. The corresponding treatment effects are also

estimated with error and the literature develops standard error estimates (e.g., Heckman, Ichimura

and Todd (1997), Dehejia and Wahba (1999), or Wooldridge (2002, Chapter 18)).

A second implementation issue immediately follows. What variables do we include in estimating

the probability of treatment? While self-selection models differentiate between variables determin-

ing outcomes and variables determining probability of being treated (X and Z, respectively, in Eqs.

(24)-(26)), matching models make no such distinction. Roughly speaking, either a variable deter-

mines the treatment probability, in which case it should be used in estimating treatment probability,

or it does not, in which case it should be randomly distributed across treated and untreated firms

16This discussion points to another distinction between PS and selection methods. The finest level to which PS

methods can go is the propensity score or the probability of treatment. Because many firms can have the same

propensity score, PS methods do not estimate treatment effects at the level of the individual firm, while selection

methods can do so.
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and is averaged out in computing treatment effects. Thus, for matching models, the prescription

is to use all relevant variables in estimating propensity scores.17

A third issue is estimation error. In principle, matching demands that treated firms be compared

to untreated firms with the same treatment probability. However, treatment probabilities must be

estimated, so exact matching based on the true treatment probability is usually infeasible. A

popular approach, following Dehejia and Wahba (1999), divides the data into several probability

bins. The treatment effect is estimated as the average difference between the outcomes of E and

NE firms within each bin. Heckman, Ichimura and Todd (1997) suggest taking the weighted

average of untreated firms, with weights declining inversely in proportion to the distance between

the treated and untreated firms. For statistical reasons, Abadie and Imbens (2004) suggest that the

counterfactual outcomes should be estimated not as the actual outcomes for a matched untreated

firm, but as the fitted value in a regression of outcomes on explanatory variables.18

5 Panel data with fixed effects

In self-selection models, the central issue is that unobserved attributes that lead firms to self-select

could explain variation in outcomes. In panel data settings, we have multiple observations on

the same firm over different periods. If the unobservable attributes are fixed over time, we can

control for them by including firm fixed effects. Applications of fixed effect models in corporate

finance include Himmelberg, Hubbard and Palia (1999), Palia (2001), Schoar (2002), Bertrand

and Mullainathan (2003), and Çolak and Whited (2005). There are undoubtedly many more.

One question is whether the use of such fixed effect models alleviates self-selection issues. Not

necessarily, as we discuss next.

There are two main issues with using firm fixed effects to rule out unobservables. One is that

the unobservables should be time invariant. When time invariant effects exist and ought to be

17This statement is not, of course, a recommendation to engage in data snooping. For instance, in fitting models

to estimate propensity scores, using quality of fit as a model selection criterion leads to difficulties, as pointed out by

Heckman and Navorro-Lozano (2004).

18The statistical properties of different estimators has been extensively discussed in the econometrics literature,

most recently in a review issue devoted to the topic (Review of Economics and Statistics (2004) vol. 86, issue 1,

Symposium on the Econometrics of Matching.)
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controlled for, fixed effect models are effective. However, time invariance is unlikely to be an

appropriate modeling choice for corporate events where unobservables are not only time varying

but also related to the event under consideration. Furthermore, unobservables often have a causal

role in precipitating the corporate finance event being studied. For instance, in the framework

of Maksimovic and Phillips (2002), firms diversify or focus because they receive an unobserved

shock that alters the optimal scope of the firm. Thus, in studying conglomerate diversification

or spinoffs, the central unobservable of importance is the scope-altering shock. It is time varying

and it leads to the event of interest—diversification. Including time-invariant firm fixed effects does

nothing to address such event-related unobservable shocks. This point also applies to the difference-

in-difference methods related to fixed effects. They do not account for event-related self-selection.

Such methods are just not designed to capture time-varying and event-related unobservables, which

are, in contrast, the central focus of selection models.19

A second issue with fixed effect models is statistical power. Models with fixed effects rely on time

variation in RHS variables and LHS outcomes for a given firm. Thus, fixed effect models often have

limited power when the underlying variables vary slowly over time. In this scenario, causal effects,

if any, are primarily manifested in the cross-section rather than time series. Zhou (2001) presents

an argument on these lines with an empirical application. Thus, it appears especially important to

take a more careful look at the lack of power as an explanation for insignificant results when using

fixed effects. It should also be pointed out that the regression R2 in fixed effects regressions could

easily lead to misleading impressions of the strength of an economic relation.20

19A related issue is the use of period-by-period estimates of Heckman-style selection models in panel data. Imposing

such a structure imposes the assumption that the period-by-period disturbances are pairwise uncorrelated with next-

period disturbances, which may not necessarily be realistic.

20Most cross-sectional studies in corporate finance with reasonable sample sizes report a modest R2 when there

are no fixed effects. However when one adds fixed effects, there is often an impressive improvement in R2 (e.g.,

Campa and Kedia (2002), and Villalonga (2004) for interesting illustrations of this point). The high R2 should not

be misattributed to the explanatory power of the included variables, because they often arise due to the (ultimately

unexplained) fixed effects.
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6 Bayesian self-selection models

Thus far, our discussion covered inference via classical statistical methods. An alternative approach

towards estimating selection models involves Bayesian methods. These techniques often represent

an elegant way of handling selection models that are computationally too burdensome to be prac-

tical for classical methods. We review the Bayesian approach briefly and illustrate their potential

value by discussing a class of selection models based on Markov Chain Monte Carlo (MCMC) simu-

lations (see Poirier (1995) for a more in-depth comparison between Bayesian and classical statistical

inferences).

6.1 Bayesian methods

The Bayesian approach begins by specifying a prior distribution over parameters that must be

estimated. The prior reflects the information known to the researcher without reference to the

dataset on which the model is estimated. In time series context, a prior can be formed by looking

at out of sample historical data. In most empirical corporate finance applications, which are cross-

sectional in nature, researchers tend to be agnostic and use non-informative diffuse priors.

Denote the parameters to be estimated by θ and the prior beliefs about these parameters by

the density p(θ). If the observed sample is y, the posterior density of θ given the sample can be

written as

p(θ|y) =
P (y|θ)p(θ)

p(y)
(27)

where p(y|θ) denotes the likelihood function of the econometric model being estimated. Given the

prior and the econometric model, Eq. (27) employs Bayes rule to generate the posterior distribution

p(θ|y) about parameter θ. The posterior density p(θ|y) summarizes what one learns about θ after

seeing the data. It is the central object of interest that Bayesian approaches wish to estimate.

A key difficulty in implementing Bayesian methods is the computation of the posterior. Except

for a limited class of priors and models, posteriors do not have closed-form analytic expressions,

which poses computational difficulties in implementing Bayesian models. However, recent advances

in computational technology and more importantly, the advent of the Gibbs sampler and the

Metropolis-Hastings algorithm, which are specific implementations of MCMC methods, simplify

implementation of fairly complex Bayesian models. In some cases, it even provides a viable route

26



for model estimation where classical methods prove to be computationally intractable. Chib and

Greenberg (1996) and Koop (2003) provide more detailed discussions of these issues.

6.2 Bayesian methods for selection models

To illustrate the implementation of the Bayesian approach to selection models, consider the switch-

ing regression model of Section 3.1. For notational convenience, rewrite this model as the system

of equations

I = 1Ziγ+ηi>0 (28)

YE,i = XE,iβE + εE,i (29)

YNE,i = XNE,iβNE + εNE,i (30)

where 1{.} denotes the indicator function and the other notation follows that in Section 3.1. As

before, assume that the errors are trivariate normal with the probit error variance in Eq. (28)

normalized to unity.

The critical unobservability issue, as discussed in Section 4, is that if a firm self-selects E, we

observe the outcome YE,i. However, we do not observe the counterfactual YNE,i that would have

occurred had firm i chosen NE instead of E. Following Tanner and Wong (1987), a Bayesian

estimation approach generates counterfactuals by augmenting the observed data with simulated

observations of the unobservables through a “data augmentation” step. When augmented data

are generated in a manner consistent with the structure of the model, the distribution of the

augmented data converges to the distribution of the observed data. The likelihood of both the

observed and the augmented data can be used as a proxy for the likelihood of the observed data.

Conditional on the observed and augmented data and given a prior on parameters γ, β and the error

covariances, approximate posteriors for the model parameters can be obtained by using standard

simulation methods. The additional uncertainty introduced by simulating unobserved data can

then be integrated out (Gelfand and Smith (1990)) to obtain posteriors conditional on only the

observed data.

Explicitly modeling the unobserved counterfactuals offers advantages in the context of selec-

tion models. The counterfactuals that are critical in estimating treatment effects are merely the

augmented data that are anyway employed in Bayesian estimation. The augmented data also re-

27



veal deficiencies in the model that are not identified by simple tests for the existence of selectivity

bias. In addition, one can obtain exact small sample distributions of parameter estimates that

are particularly useful when sample sizes are small to moderate, such as self-selection involving

relatively infrequent events. Finally, we can impose parameter constraints without compromising

estimation. In later sections, we review empirical applications that employ the Bayesian approach

towards estimating counterfactuals (Li and McNally (2004), and Scruggs (2006)). We also illustrate

an application to a matching problem (Sørensen (2003)) in which the tractability of the conditional

distributions given subsets of parameters leads to computationally feasible estimators in a problem

where conventional maximum likelihood estimators are relatively intractable.
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II. Empirical Applications

This part reviews empirical applications of self-selection models in corporate finance. We limit

our scope to papers in which self-selection is an important element of the econometric approach

or substantive findings. We begin with applications in event-studies. Here, the specifications are

related to but differ from standard selection models. We then review applications in security

offerings and financial intermediation, where more conventional selection models are used to char-

acterize how private information affects debt issue pricing. We then turn to the diversification

discount literature, where a range of methods have been used to address self-selection issues. The

remaining sections include a collection of empirical applications based on selection and propensity

score based matching methods. A last section covers Bayesian techniques. As will be clear from the

review, most applications are relatively recent, involve a reasonably broad spectrum of approaches.

In most cases, the model estimates suggest that unobserved private information is an important

determinant of corporate finance choices.

7 Event studies

Event studies are a staple of empirical corporate finance. Hundreds of studies routinely report the

stock market reactions to announcements such as mergers, stock splits, dividend announcements,

equity issues, etc. Evidence in these studies has been used as a basis for testing and generating a

wealth of theories, policies, and regulations. Chapter 1 in this volume (Kothari and Warner (2006))

overviews the literature.

Self-selection entered the event-study literature relatively recently. Its main use has been as a

tool to model private information revealed in events. The basic idea is that when firms announce

events, they reveal some latent “private” information. If the private information has value, it should

explain the announcement effects associated with an event. Selection models are convenient tools

to model the information revelation process and estimate “conditional” announcement effects.

7.1 Conditional announcement effects: Acharya (1988)

Acharya (1988) introduces the self-selection theme to event-studies, using a version of the standard

Heckman specification to model calls of convertible bonds. In Acharya’s model, firms decide whether
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to call an outstanding convertible bond (event E) or not (event NE) according to a probit model,

viz.,

E if Wi = Ziγ + ηi > 0 (31)

NE if Wi = Ziγ + ηi ≤ 0 (32)

where Z denotes known observables and η, the probit error term, is private information. Ex-ante,

private information has zero mean, but ex-post, once the firm has announced E or NE, markets

update expectations. If the private information affects stock prices, the stock price reaction y to

the firm’s choice should be related to the updated value of private information. Assuming that

(η, y) are bivariate normal with mean, variances, and correlation equal to (0, 0, 1, σ2
y , ρ), we can

write

E(y|E) = πE(ηi|ηi > −Z ′
iγ) = πλE(Z ′

iγ) (33)

where π = ρσε and λE(Z ′
iγ) = πφ(Z ′

iγ)/Φ(Z ′
iγ), the inverse Mills ratio. Eq. (33) gives the

conditional announcement effect associated with event E. It is a specialized version of the Heckman

(1979) model (e.g., Eq. (10)) in which there are no regressors other than the inverse Mills ratio.21

The empirical application in Acharya (1988) is conversion-forcing calls of convertible bonds

(event E) while NE denotes the decision to delay forced conversion. Acharya finds that the

coefficient π in Eq. (33) is statistically significant, suggesting that the markets do react to the

private information revealed in the call. The coefficient is negative, consistent with the Harris

and Raviv (1985) signaling model. A legitimate question is whether testing for the significance of

unconditional announcement effects and running a linear regression on characteristics Z could yield

inferences equivalent to those from Acharya’s model. Acharya (1993) offers simulation evidence and

the question is formally analyzed in Prabhala (1997). Self-selection models add most value when

one has samples of firms that chose not to announce E because these methods offer a natural way

of exploiting the information in samples of silent non-announcers.

21The absence of other regressors is dictated by the condition that announcement effects should not be related to

ex-ante variables under the efficient markets hypothesis.
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7.2 Two announcements on the same date: Nayak and Prabhala (2001)

In the Acharya model, there is one announcement on an event-date. Nayak and Prabhala (2001)

analyze a specification in which two announcements are made on the same date. They present a

model to recover the individual impact of each announcement from the observed announcement

effects, which reflect the combined impact of both announcements made on one date.

The empirical application in Nayak and Prabhala is to stock splits, 80% of which are announced

jointly with dividends. Nayak and Prabhala model the joint decisions about whether to split a stock

and whether to increase dividends using a bivariate probit model, which can be specified as

SPLi = γsZsi + ψsi (34)

DIVi = γdZdi + ψdi (35)

If SPLi exceeds zero, a firm splits, and if DIVi exceeds zero, it increases dividends. The private

information components of these two latent variables are ψsi and ψdi, and these have potentially

non-zero correlation ρsd. The announcement effect from the two decisions is

E (ARsdi) = γsd + βdE(ψdi | C,S) + βsE(ψsi | C,S) (36)

The question of substantive interest is to decompose the joint split-dividend announcement effect

into a portion due to the dividend information implicit in a split and the portion unrelated to

the dividend information in the split. This decomposition cannot be inferred directly from Eq.

(36) because the term relating to splits (βdE(ψdi | C,S)) incorporates both the dividend and the

non-dividend portion of the information in splits. However, this decomposition is facilitated by

writing the split information ψsi into dividend and non-dividend components. Accordingly, write

ψsi = ρsdψdi + ψs−d,i, in which case the joint announcement effect is

E (ARsdi|C,S) = γsd + (αd − ρsdαs−d)E(ψdi | C,S) + αs−dE(ψsi | C,S) (37)

where αd and αs−d denote the reaction to the dividend and pure split components of the information

in splits. Given these, Nayak and Prabhala show that the market’s reaction to a hypothetical “pure”

split unaccompanied by a dividend is

E (ARsi) = (1− ρ2
sd)αs−dψsi + ρsdαdψsi (38)
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The first component in Eq. (38) represents the market’s reaction to pure split information or-

thogonal to dividends and the second represents the reaction to the dividend information implied

by a split. Estimating the model is carried out using a two-step procedure.22 Using a sample of

splits made between 1975 and 1994 divided into two sub-samples of ten years each, Nayak and

Prabhala report that about 46% of split announcement effects are due to information unrelated to

the dividend information in splits.

The Nayak and Prabhala analysis has interesting implications for sample selection in event

studies. In many cases, an event is announced together with secondary information releases. For

instance, capital expenditure, management, or compensation announcements may be made together

with earnings releases, creating noisy samples. The conventional remedy for this problem is to

pick samples in which the primary announcement of interest is not accompanied by a secondary

announcements by firms. However, the analysis in Nayak and Prabhala suggests that this remedy

may not cure the ill, since markets can form expectations about and price secondary announcements

even when they are not explicitly announced on the event date. A different approach is to model

both announcements and extract the information content of each. Selection methods are useful

tools in this regard because they explicitly model and incorporate the latent information from

multiple announcements.

7.3 Takeovers: Eckbo, Maksimovic and Williams (1990)

Eckbo, Maksimovic and Williams (1990)—henceforth EMW—propose variants of the “truncated

regression” specification, rather than the Heckman selection model used in Acharya (1988) model

to analyze announcement effects. Their empirical application is to takeovers, the subject of Chapter

17 (Betton, Eckbo and Thorburn (2006)).

EMW develop two models for announcement effects. In both models, managers announce event

E if the stock market gain, yi = xiγ + ηi is positive. As before, ηi is private information, normally

distributed with mean zero and variance ω2 and xi denotes publicly known variables. In model 1,

22The parameter ρsd is obtained as the correlation coefficient in the bivariate probit model Eqs. (34)-(35). The

inverse Mills ratios for Eq. (37) follow (they require modification from standard expressions to incorporate non-zero

correlation between bivariate latent variables). The other coefficients can be estimated from regression Eq. (37).
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event E completely surprises the capital markets. In this case, the bidder’s announcement effect is

F (xi) = E(yi|yi = xiγ + ηi > 0)

= xiγ + ω
φ(xiγ/ω)
Φ(xiγ/ω)

(39)

In model 2, the market learns about the impending takeover on a prior rumor date. The

probability that the takeover will be announced is the probability that the takeover gain is positive,

i.e., Pr(xiγ + ηi > 0) = Φ(xiγ/ω). If the takeover occurs, the gain is F (xi), while the absence of

the takeover is assumed to lead to zero gain. Thus, the expected stock return on the rumor date is

F (xi)Φ(xiγ/ω). On the actual merger announcement date, the takeover probability rises to 1 and

the announcement effect is

G(xi) = [xiγ + ω
φ(xiγ/ω)
Φ(xiγ/ω)

][1− Φ(xiγ/ω)] (40)

The EMW expression in Eq. (40) is different from the Acharya model because EMW assume

that private information has value only conditional on the takeover E, but has no value if there is no

takeover. Thus, EMW model the real gains specific to mergers rather than non-specific information

modeled by Acharya. In the actual empirical application. EMW find that bidder gains decrease

with the size of the bidder relative to the target, the concentration of firms in the industry, and the

number of previous takeovers in the industry. As a model diagnostic, they show that OLS estimates

differ from those of the non-linear model Eq. (40), which is supported by the Vuong (1989) test

statistics. EMW also report that ω2 is significant, indicating that bidders’ private information is

valued by capital markets.

The EMW framework has been widely applied in other event-studies with cross-sectional re-

gressions. Eckbo (1990) examines the valuation effects of greenmail prohibitions and finds that

the precommittment not to pay greenmail is value enhancing. Maksimovic and Unal (1993) es-

timate the after-market price performance of public offers in thrift conversions recognizing that

management’s choice of issue size reflects the value of growth opportunities and conflicts of in-

terest between managers and investors. Servaes (1994) relates takeover announcement effects to

excess capital expenditure. Hubbard and Palia (1995) find an increasing and then decreasing re-

lation between merger announcement effects and managerial ownership levels. Bohren, Eckbo and

Michaelsen (1997) use it to explain why rights flotations are not favored over public offerings de-

spite the greater direct costs of the latter. Li and McNally (2006) apply the EMW method to
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open market share repurchases in Canada and find evidence supporting a signaling interpretation

of repurchase announcement effects. We study one particular extension of EMW, Eckbo (1992), in

greater detail next.

7.4 Takeover deterrence: Eckbo (1992)

Eckbo (1992) extends the EMW framework to account for the fact that regulatory challenges and

court decisions on these could affect merger gains. To the extent these decisions also involved

unobserved private information, they introduce additional selection bias terms into the final speci-

fication. Eckbo develops these models and applies them to horizontal mergers and price effects of

rivals not involved in takeovers.

As in EMW, horizontal mergers occur if the acquirer’s share of the synergy gains, yj = xjγ+ηj >

0. Under the EMW assumptions, the model for the announcement effects is Eq. (40). Additionally,

regulators can choose whether to initiate anti-trust actions or not, and subsequently courts can

decide whether to stop a merger or not. These actions are modeled using additional probit models.

R = xiφr + ηr > 0 (41)

C = xiφc + ηc > 0 (42)

Merger gains are realized if mergers are not challenged or they are challenged but challenges are

unsuccessful. Assuming that challenges have a cost c proportional to merger gains, conditional

announcement effects of merger announcements can be written as

E(ARi|E) = [(1− pripci)(xiγ + ω
φ(xiγ/ω)
Φ(xiγ/ω)

− pric][1− Φ(xiγ/ω)] (43)

Eckbo applies the truncated regression models to U.S. and Canadian data. For Canadian data,

Eckbo uses the EMW models Eqs. (39)-(40) because there is no regulatory overhang. He uses Eq.

(43) in U.S. horizontal mergers where regulatory overhang exists. The explanatory variables include

the ratio of the market values of the bidder and target firms, the number of non-merging rival firms in

the industry of the horizontal merger, the pre-merger level of and merger-induced change in industry

concentration. Eckbo finds that bidder gains are positively related to the pre-merger concentration

ratio and are negatively related to the merger-induced changes in the concentration ratio. These

do not support the collusion explanation for merger gains. In an interesting innovation, Eckbo
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also estimates the models for non-merging rivals. He reports similar and even sharper findings in

challenged deals where court documents identify rivals more precisely. Changes in concentration

are negatively related to rival gains in the regulatory overhang free environment in Canada, further

refuting the collusion hypothesis.

8 The pricing of public debt offerings

Companies making a debt issue must make several decisions related to the offering such as the

terms and structure of the offering, the type of the underwriter for the issue. Private information

held by the issuer or the intermediaries participating in the offering could affect the choices made

by firms. If such information has value, it affects the prices at which issues can be sold. A fairly

wide range of self-selection models have been used to address the existence of private information

and its effect on the pricing of debt issues. We review some of the applications and the key findings

that emerge.

8.1 Bank underwritings and the Glass-Steagall Act: Puri (1996)

The choice of an underwriter is an area that has been extensively analyzed using self-selection

models. An early application is Puri (1996), who investigates the information in a firm’s choice

between commercial banks and investment banks as underwriters of public debt offerings. Com-

mercial banks are often thought to possess private information about their borrowers. If they use

the private information positively, commercial bank underwritten offerings should be priced higher

(the “certification” hypothesis). Alternatively, banks could use their information negatively to

palm off their lemons to the market, in which case the markets should discount commercial bank

underwritten offerings (the “conflicts of interest” hypothesis). Selection models are natural avenues

to examine the nature of these private information effects.

Puri models the private information in the underwriter choice using a probit model, viz.,

C = CB ≡ Wi = Ziγ + ηi > 0 (44)

C = IB ≡ Wi = Ziγ + ηi ≤ 0 (45)

35



where CB denotes a commercial bank, IB denotes an investment bank, and ηi is the private

information in offering i. Markets price issue i at yield yi where

yi = xiβ + εi (46)

E(yi|C) = Xiβ + πλC(Ziγ) (47)

Eq. (47) follows from Eq. (46) and the assumption that ε and η are bivariate normal. The

above system is, of course, the standard Heckman model of Section 2, so the sign of the covariance

coefficient π determines the impact of private information on offer yields. If π > 0 , markets

demand higher yield for CB offerings, consistent with a conflicts of interest hypothesis, while π < 0

supports the certification hypothesis.

The data in Puri (1996) are debt and preferred stock issues prior to the passage of the 1933

Glass-Steagall Act. She includes issue size, credit rating, syndicate size, whether the security

is exchange listed, whether it is collateralized, and the age of the issuer as determinants of the

offer yield. She finds that π < 0, consistent with the certification hypothesis. Additionally, π is

more negative for information sensitive securities, where the conflicts of interest hypothesis predicts

the more positive coefficient.23 Gande, Puri, Saunders and Walter (1997) and Gande, Puri, and

Saunders (1999) report similar findings for debt issues offered after the 1989 relaxation of the Glass-

Steagall Act. Underwritings by commercial banks convey positive information that improves the

prices at which debt offerings can be sold.24

8.2 Underwriting syndicate structure: Song (2004)

Song (2004) analyzes debt offerings as in Puri (1996) and Gande et al. (1997, 1999) but there

are some important differences in her specifications. Song uses a switching regression instead of

the Heckman model. Second, she focuses on the effect of the syndicate structure rather than the

commercial/investment banking dichotomy on debt issue spreads.

23Of course, it is possible that investors paid more for bank underwritten issues but were fooled into doing so. Puri

(1994) rules out this hypothesis by showing that bank underwritten offerings defaulted less than non-bank issues.

24Chiappori and Salanie (2000) use similar methods to analyze the role of private information in insurance markets.

Liu and Malatesta (2006) is a recent application of self-selection models to seasoned equity offerings. They analyze

the availability of a credit rating on the underpricing and announcement effects of SEOs.
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In Song’s model, commercial banks could enter as lead underwriters or be part of a hybrid

syndicate with investment banks. Alternatively, issues could be underwritten by a pure investment

bank syndicate. For each outcome, we observe the yield of the debt offering, which is modeled

as a function of public information and (implicitly) the private information conveyed in the firm’s

choice of a syndicate structure. The resulting specification is a variant of the switching regression

model of Section 3.1, and can be written as

Ai = 1 if −ZAiγA + ηAi > 0 (48)

Bi = 1 if −ZBiγB + ηBi > 0 (49)

Ci = 1 if −ZCiγC + ηCi > 0 (50)

Y1i = X1iβ1 + η1i (51)

Y2i = X2iβ2 + η2i (52)

Y3i = X3iβ3 + η3i (53)

where we have adapted Song’s notation for consistency with the rest of this chapter.25 In Eqs.

(48)-(50), the counterfactuals are A = 0, B = 0, and C = 0, respectively.

In Song’s model Ai = 1 if a lead investment bank invites a commercial bank to participate in

the syndicate. Bi = 1 if the commercial bank joins the syndicate, and zero otherwise. Ci = 1 if a

commercial bank led syndicate is chosen and Ci = 0 if a pure investment bank syndicate is chosen.

Thus, a hybrid syndicate is observed (regime 1) when Ai = 1 and Bi = 1; a pure investment bank

syndicate (regime 2) is observed when Ai = 0 and Ci = 0, while a commercial bank led syndicate

(regime 3) is observed when Bi = 0 and Ci = 1.26 Song assumes that the latent errors η are i.i.d.

normal, correlated with yields Y with regression coefficients σωj where ω ε {A, B, C} and j ε {1,

25Song’s usage of signs for coefficients and error terms illustrates some confusing notation in the limited dependent

variable literature. Her notation follows Maddala (1983) where the selection criterion is often written as Zγ − η > 0,

while the more modern textbook convention is to use Zγ + η > 0.

26Song does not explicitly write out the extensive form of the model she estimates. It is unclear whether pure

investment bank syndicates should also include the node at which an investment bank is awarded the mandate and

chooses to invite a commercial bank but the bank declines to join.
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2, 3}. The yields in each regime can be expressed in regression form as

E(y1i|Ai = 1, Bi = 1) = X1iβ1 + σA1
φ(ZAiγA)

1− Φ(ZAiγA)
+ σB1

φ(ZBiγB)
1− Φ(ZBiγB)

(54)

E(y2i|Ai = 0, Ci = 0) = X2iβ2 − σA2
φ(ZAiγA)
Φ(ZAiγA)

− σC2
φ(ZCiγC)
Φ(ZCiγC)

(55)

E(y3i|Bi = 0, Ci = 1) = X3iβ3 − σB3
φ(ZBiγB)
Φ(ZBiγB)

+ σC3
φ(ZCiγC)

1− Φ(ZCiγC)
(56)

Song’s sample comprises 2,345 bond issues offered between January 1991 and December 1996.

In the first step probit estimates, Song reports that compared to pure investment bank syndicates,

hybrid syndicates underwrite small firms that have made smaller debt issues in the past, have low

S&P stock rankings, invest less, and use more bank debt. These findings are reminiscent of those

in Puri and Gande et al. (1997, 1999) that commercial banks underwrite informationally sensitive

companies. Compared to commercial bank led syndicates, hybrid syndicates underwrite smaller

firms with lower stock rankings that issue to refinance debt and lower ranked firms, consistent

with the claim that these underwritings potentially alleviate conflicts of interest with commercial

banks. Only two out of six private information coefficients in Eqs. (54)-(56) are significant. Pricing

benefits are seen in pure investment banking syndicates (Eq. (55)) where excluding a commercial

bank leads to higher yields, consistent with a certification hypothesis. On the other hand, picking

an investment bank to run the syndicate increases yields, because the coefficient σC2 in the same

equation Eq. (55) is positive. Thus, the ex-ante effect of awarding a syndicate to an investment

bank cannot be a priori signed.

Relative to prior work, Song (2004) has very different sample, sample period, and explanatory

variables, not to mention the changes in underwriter classification, which is based on syndicate

structure rather than on classification into commercial/investment bank or on bank reputation.

Thus, it is hard to pinpoint the specific value added by her elaborate selection model. In addition,

absent additional diagnostics, it is also difficult to interpret whether the general insignificance

of most selection terms reflects coefficients that are truly zero, the lack of power, perhaps due to

collinearity, or perhaps an unmodeled correlation between errors in Eqs. (48)-(50) that are assumed

to be i.i.d. for the purposes of estimation. As Song points out, additional data may not help shed

light on interpretation or robustness because there have been structural changes in the banking

industry since 1996, due to several mergers and further relaxation of the Glass-Steagall Act.
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8.3 Underwriter reputation: Fang (2005)

Like the other papers reviewed in this section, Fang (2005) also studies the role of underwriter

choice in explaining at-issue bond spreads. Unlike the other papers in the section, however, Fang

draws on an earlier literature and classifies underwriters by reputation rather than by organization

into commercial or investment banks. Fang examines whether the information in the choice of a

reputed underwriter impacts underwriting spreads and yields.

Fang uses a probit specification to model underwriter-issuer matching. If issue i is underwritten

by a reputed underwriter, the yield is YE,i and if not, the yield is YNE,i. Yields are specified as a

function of regressors xi with different regression coefficients across the two choices. Thus, Fang’s

model is exactly the switching regression of Section 3.1. Fang also estimates an auxiliary regression

where the dependent variable is gross spread rather than offer yield.

Fang finds that reputed underwriters underwrite higher grade, less risky issues of large and

frequent issuers, and are more likely to be associated with longer maturity callable issues that she

interprets as being more complex. The self-selection term in the yield equation is negative. Thus,

the unobserved information that leads firms to choose reputed underwriters leads to lower bond

yields or better offer prices. In the specification analyzing gross spreads, Fang finds that issue size

increases fees more rapidly but risk variables matter less for reputed underwriters, indicating greater

marginal costs and superior risk bearing capacity of reputed underwriters. Most importantly, the

coefficient for the inverse Mills ratio in the gross spread equation is positive, suggesting that reputed

underwriters charge greater fees to issuers.

Taken together, the yield and gross spread specifications show that reputed underwriters charge

issuers greater fees and lower the offer yields (i.e., increase the offer price) to borrowers. Fang shows

that the benefit of lowered debt yields typically outweighs the higher commissions paid by issuers.

The pattern of results is shown to strengthen in lower yield bonds, so that reputation matters more

for more informationally sensitive issues.

8.4 Debt covenants: Goyal (2005)

While the papers reviewed in this section study and model information in underwriter choice,

Goyal (2005) examines the information in the choice of covenants attached to debt issues. Goyal

argues that commercial banks often enjoy franchise value because of regulations that deter free
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entry. Banks with more valuable franchises are less likely to engage in excessive risk taking, so

they should have less need to include covenants in their debt issues. This incentive is recognized

and priced by the market, and the pricing differential again feeds back into firms’ decisions about

whether to include covenants. In other words, the decision to include covenants influences and

is influenced by the expected pricing benefits from doing so. Goyal implements the structural

self-selection model of Section 3.2 to model the simultaneity.

Goyal estimates the structural model on a sample of 415 subordinated debt issues made by firms

between 1975 and 1994. He finds that yields are negatively related to franchise value. This finding

is consistent with the hypothesis that banks with greater franchise value have less incentives to take

risk, latent information that is recognized and priced by financial markets. The inverse Mills ratio

term is significant in the no-covenant sub-sample but not in the sample with restrictive covenants. In

the equation explaining whether firms use covenants or not, the coefficient for the yield differential

with/without covenants is significant in explaining covenant choice, suggesting that anticipated

pricing benefits do influence whether firms select covenants or not in their debt issues. Many of

Goyal’s results are more prominent in the 1981-1988 sub-period, when the risk-taking activity in

the U.S. was more elevated.27

8.5 Discussion

The public debt issue pricing area is interesting for the wide range of selection models employed.

One issue, however, is that it is a little difficult to place the literature in perspective because the

sources of self-selection modeled vary across papers. An additional issue is, of course, that there is

probably self-selection on other dimensions as well, such as maturity, collateral, or the callability

of an issue, not speaking of the decision to issue debt in the first place. This raises another thorny

question, one that probably has no easy answer. What dimensions of self-selection should one

control for in a given empirical application? Modeling every source of selection seems infeasible,

while studying some sources of bias while ignoring others also seems a little ad-hoc. Embarking on

a purely empirical search for sources of selection that matter is certainly undesirable, smacking of

data snooping. A happy middle way is likely to emerge as the literature matures.

27Reisel (2004) provides an interesting extension, a structural self-selection model applied to debt covenants included

in industrial bonds.
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9 Other investment banking applications

9.1 Underwriter compensation in IPOs: Dunbar (1995)

Dunbar (1995) presents an interesting application of a Roy (1951) style self-selection model to

the study of underwriter compensation. Some IPO issuers offer warrants to compensate their

underwriters while other issuers do not. Dunbar examines the role of self-selection in explaining

this choice, and in particular, whether firms choose the alternative that minimizes their underwriting

costs.

Let W denote the decision to use warrants to compensate underwriters and N if not, subscripts

w and n denote the costs if warrants are used or not, respectively, U denote underpricing costs and

C the other costs of going public. If firm i chooses underwriter warrant compensation, we observe

the pair {Uwi, Cwi} while we observe {Uni, Cni} if it chooses just straight cash compensation.

The key self-selection issue is that we observe the choice made by firm i but not the costs of the

alternative not chosen by firm i. Without knowing the unchosen counterfactuals, we cannot tell how

much a company saved by choosing to include or exclude warrants to compensate its underwriters.

Dunbar models the decision to use warrants using a probit model

W = ξ(Uni + Cni − Uwi − Cwi)− εi > 0 (57)

N = ξ(Uni + Cni − Uwi − Cwi)− εi ≤ 0 (58)

The expression in parentheses in Eq. (57) is the reduction in offering costs if warrants are used

as compensation instead of straight cash compensation. Each component of costs is written as a

function of observables and unobservables as follows.

Uni = Xniβn + εuni (59)

Uwi = Xwiβw + εuwi (60)

Cni = Zniγn + εcni (61)

Cwi = Zwiγw + εcwi (62)

Assuming that the errors in Eqs. (59)-(62) are i.i.d. normal but potentially correlated with the

probit error term, Dunbar’s system is a version of the Roy (1951) self-selection model.

Dunbar reports that variables such as offering size, underwriter reputation, and a hot issue

dummy explain underpricing in the warrant and cash compensation samples. The self-selection
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term is significant in the non-warrant sample but not in the warrant compensation sample. Most

interesting are Dunbar’s estimates of unobserved counterfactuals. For firms that do not use war-

rants, underpricing (other costs) would be 11.6% (19.2%) on average had warrants been used

compared to actual underpricing (other costs) of 12.8% (9.8%). For firms that do use warrants,

underpricing (other costs) would be 36.4% (14.6%) if warrants had not been used, compared to

actual costs of 23.3% (23.9%). While warrants are associated with high underpricing in reduced

form cross-sectional regressions, it is incorrect to conclude that warrants result in higher under-

pricing. Estimates of the self-selection model indicates that the use of warrants actually reduces

underpricing compared to what it would be without warrants. Firms appear to use warrants to

reduce underpricing costs.

9.2 Analyst coverage: Ljungqvist, Marston and Wilhelm (2005)

Ljungqvist, Marston and Wilhelm (2005) examine the relation between the decision to award an

underwriting mandate to a bank and the coverage offered by the bank’s analyst. The self-selection

issue in Ljungqvist et al. is that banks self-select on whether they cover a stock or not. If the bank

covers a stock, we observe the nature of the stock recommendation and we can tie it to the decision

to award an underwriting mandate. However, if a bank does not elect to cover a stock, we do not

know what the nature of its recommendation might have been had it chosen to cover the stock.

Ljungqvist et al. model this source of self-selection in testing whether a firm with more positive

coverage of a firm is more likely to win the firm’s underwriting mandates.

Ljungqvist et al. model the probability that bank j covers firm i’s stock as a probit model

yC = 1 if y∗C = XCβC + uC > 0

yC = 0 if y∗C = XCβC + uC ≤ 0 (63)

where all subscripts are suppressed for notational convenience. If there is coverage, the tie between

coverage and the award of an underwriting mandate is established by the equations

yA = βAXA + uA

yL = IβLXL+δLyA+uL>0

 if y∗C > 0 (64)
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If there is no coverage, we have

yA = 0

yL = IβLNCXL+uLNC>0

 if y∗C ≤ 0 (65)

where yA is the nature of an analyst’s recommendation, yL is a 1/0 dummy for whether an under-

writing mandate is awarded to a bank, I is the 1/0 indicator function, and X’s are explanatory

variables. Eqs. (63)-(65) represent a switching regression system, similar to the type analyzed in

Section 3.1. The difference here is that we have two recursive equations observed in each regime

instead of just one regression in Section 3.1.

Ljungqvist et al. find that the decision to cover a stock is positively related to the type of cover-

age offered by an analyst for debt underwriting transactions. Prior relationships in the underwriting

and loan markets are the other most significant explanatory variables. There is no evidence that

the type of coverage influences the decision to award equity underwriting mandates. Even when

it is significant, the coefficient for analyst recommendation βA in Eq. (64) is negative. Ljungqvist

et al. interpret this finding as evidence that even if analysts are overly biased, issuers refrain from

using them for underwriting.

The analysis in Ljungqvist et al. has appealing features. The choice of instruments is carefully

motivated, with both economic intuition and tests for instrument strength suggested by Steiger

and Stock (1997). Their analysis also suggests some natural extensions. One issue is that the very

decision to cover a stock—rather than the type of coverage—might affect the probability of winning

an underwriting mandate. A second and perhaps more difficult issue is that of cross-sectional

correlation. The 16,000+ transactions in the Ljungqvist et al. sample occur over overlapping

periods, which leads to commonality across transactions and potential cross-sectional correlation

in the disturbance terms.

10 Diversification discount

The scope of the firm is an issue that has occupied economists since Coase (1933). One issue in

this literature has been whether firms should diversify or not. While the question can be examined

from several perspectives, a now well developed literature in finance investigates the diversification

question from a valuation perspective. Does diversification impact firm value, and if so, in what
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direction, and why does diversification have this effect? Our review of this literature focuses on

self-selection explanations for diversification. Chapter 9 (Maksimovic and Phillips (2006)) provides

a more complete review of the now vast literature on diversification.

The recent finance literature on diversification begins with the empirical observation that di-

versified firms trade below their imputed value, which is the weighted average value of stand-alone

firms in the same businesses as the divisions of the diversified firm (see, e.g., Lang and Stulz (1994),

Berger and Ofek (1995), and Servaes (1996)). The difference between the actual and imputed val-

ues is called the diversification discount. The existence of a diversification discount is frequently

interpreted as a value destroying consequence of diversification, although there is no consensus on

the issue (e.g., Chevalier (2000), and Graham, Lemmon and Wolf (2002)). We review three papers

that discuss the role of self-selection in explaining the source of diversification discount.

10.1 Unobservables and the diversification discount: Campa and Kedia (2002)

Campa and Kedia (2002) argue that firms self-select into becoming diversified and that self-selection

explains the diversification discount. They model the decision to become diversified using a probit

model

Dit = 1 if Zitγ + ηit > 0 (66)

Dit = 0 if Zitγ + ηit ≤ 0 (67)

where Dit is a diversification dummy that takes the value of 1 if the firm operates in more than

one segment, and 0 otherwise, and Zit is a set of explanatory variables. The notations are adapted

to match that in Section 2. Excess value Vit is specified as

Vit = d0 + d1Xit + d2Dit + εit (68)

where Xit is a set of exogenous observable characteristics of firm i at time t. Coefficient d2 is the

key parameter of interest. If it is negative, becoming diversified causes the diversification discount.

If not, the diversification discount could not be due to diversification. Under the assumption that

the error terms in Eqs. (67)-(68) are bivariate normal, the system is akin to and is estimated just

like the basic Heckman selection model.28

28Compared to the standard Heckman model, there is one additional variable in the second stage equation (68),

specifically, the dummy variable Dit. The Heckman model with the additional dummy variable is called a “treatment
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In the empirical application, Campa and Kedia measure the LHS variable in Eq. (68), as the

difference between the actual value of the firm and the sum of the imputed value of each of its

segments. Segment imputed values are estimated using multipliers based on market value to sales

or market value to book value of assets of peer firms. The explanatory variables for Eq. (68)

include profitability, size, capital expenditure, and leverage. The additional instruments used in

the probit specification Eqs. (66)-(67) include industry instruments such as the fraction of firms (or

their sales) in an industry that are diversified, time instruments, macroeconomic indicators such

as the overall economic growth and economic expansion/contraction, and firm specific instruments

such as being listed on a major exchange or being included in a stock index. Campa and Kedia

extensively discuss their choices for instruments.

Campa and Kedia show that in OLS specifications, d2 is negative, so that diversified firms

do appear to trade at a discount. However, once they include the inverse Mills ratio to correct

for self-selection, the coefficient d2 becomes positive. The negative sign seen in OLS estimates is

soaked up by the coefficient for the inverse Mills ratio. This indicates that diversified firms possess

private information that makes them self-select into being diversified. The information is negatively

associated with value and leads to the diversification discount. After accounting for unobserved

private information, there is no diversification discount: in fact, there is a premium, implying that

diversification may well be in shareholders’ best interests.

The flip in the sign of d2 when the selection term is introduced does raise the question of ro-

bustness of results, particularly with respect to potential collinearity between the dummy variable

for diversification and the inverse Mills ratio that corrects for selection. Campa and Kedia ad-

dress this issue by reporting several other models, including a simultaneous questions system that

instruments the diversification dummy Dit and evidence based on a sample of refocusing firms.

The main results are robust: there is indeed a diversification discount as found by Lang and Stulz

(1994) or Berger and Ofek (1995) when using OLS estimates. However, this discount is not due

to diversification, but by private information that leads firms to become diversified. In fact, the

effects” model. The panel data setting also requires the additional assumption that the unobserved errors be i.i.d.

period by period. Campa and Kedia estimate fixed effects models as an alternative to Heckman-style selection models

to handle the panel structure of the data.
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Campa and Kedia self-selection estimates suggest that diversified firms trade at a premium relative

to their value had they not diversified.

10.2 Observables and the discount: Villalonga (2004)

While Campa and Kedia (2002) attribute the diversification discount to unobservables causing firms

to diversify, Villalonga (2004) offers an explanation based on differences in observables. Villalonga

uses a longitudinal rather than cross-sectional analysis, focusing on changes in excess value around

diversification rather than the level of the excess value itself.

Villalonga’s main sample comprises 167 cases where firms move from being one segment to two

segments. She tracks the changes in the diversification discount around the diversification event

compared to a control group of non-diversifying firms, using propensity score (PS) based matching

to construct matched control firms. Following the methods discussed in Section 4.3.2, Villalonga

fits a probit model to estimate the probability that a given firm will diversify using variables similar

to those in Campa and Kedia (2002). She matches each diversifying firm with a non-diversifying

firm with a similar propensity score, i.e., diversifying probability. Her final sample has five quintiles

of firms based on their estimated propensity scores and having a common support.

Villalonga estimates the “treatment effect” caused by diversification as the difference between

the change in excess value of a diversifying firm and the excess value change of a comparable non-

diversifying firms with the closest propensity score. She reports that while the treatment effect

is negative, it is not significant whether she uses the Dehajia and Wahba (1999) or the Abadie

and Imbens (2004) technique for estimation. Villalonga also reports similar findings when using

a Heckman correction, presumably a treatment effect model on the lines of Campa and Kedia

(2002).29

Two aspects of Villalonga’s results deserve comment. One issue is perhaps semantic, the use of

the term causal inference. In reading the work, one could easily come away with the impression that

29In reviewing applications, we often found references to “the” Heckman model or “standard” Heckman models

to be quite confusing. Campa and Kedia (2002) and Çolak and Whited (2005) use it to denote a treatment effects

model, and focus on the coefficient for the diversification dummy variable. However, the Heckman (1979) model is

not a treatment effects model. Also, it is not clear from the papers whether the coefficient of interest is the coefficient

for the dummy variable in a treatment effects model or for the inverse Mills ratio term. It is perhaps a better practice

not to use labels but instead describe fully the specification being estimated.
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matching methods somehow disentangle causality from correlation. This is incorrect. Matching

methods rule out correlation by arbitrary fiat: causality is an assumption rather than a statistically

tested output of these methods. This fact is indeed acknowledged by Villalonga but easy to overlook

given the prominence attached to the term “causal inference” in the paper.

A second issue is that some point estimates of treatment effects are insignificant but not very

different in economic magnitude from those in Lang and Stulz (1994) and Berger and Ofek (1995)—

and indeed, from the baseline industry-adjusted estimates that Villalonga herself reports. Thus,

in fairness to Lang and Stulz and Berger and Ofek, Villalonga’s results do not necessarily refute

their earlier work. Nevertheless, Villalonga’s work does make an important point. Specifically, the

statistical significance of discount based on industry/size matching methods is not a given fact, but

is an open question in light of her results.

10.3 Refocusing and the discount: Çolak and Whited (2005)

If one accepts the diversification discount as a fact, then the question is what causes the discount.

One view is that conglomerates (i.e., diversified firms) follow inefficient investment policies, sub-

sidizing inefficient divisions with cash flow from the efficient divisions. Çolak and Whited (2005)

evaluate the efficiency of investment in conglomerate and non-conglomerate firms by comparing

investments made by focusing firms with those made by firms that do not focus. The focusing

sample in Çolak and Whited (2005) consists of 267 divestitures and 154 spinoffs between 1981 and

1996. Control non-focusing firms are multi-segment firms in similar businesses that do not focus in

years -3 through +3 where year 0 is the focusing event for a sample point.

The main specification used in Çolak and Whited (2005) employs propensity scores to match

focusing and non-focusing firms. As in standard propensity score method implementations, Çolak

and Whited (2004) estimate the propensity score as the probability that a given firm will focus in

the period ahead. The probit estimates broadly indicate that firms are more likely to focus if they

are larger, have less debt, diversity in segments (entropy), and have had recent profit shocks.

The central issue in Çolak and Whited is, of course, on change in investment efficiency after

a focusing activity. Çolak and Whited use several measures of change in investment efficiency,

including investment-Q sensitivity, the difference in adjusted investment to sales ratio between

high and low growth segments, and the relative value added, which is akin to weighted investment
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in high minus low Q segments. Çolak and Whited find that the changes in these measures are

not significant relative to changes in firms that do not focus and that have similar propensity

scores, using the Dehejia and Wahba (1999) matching procedure and the Abadie and Imbens (2004)

implementation. There is no evidence that post-spinoff efficiency improves once the focusing firms

are matched by propensity score to the non-focusing firms.

For robustness, Çolak and Whited also report estimates of a treatment effects model, Eq. (68)

of Campa and Kedia (2002). There is little evidence for efficiency gains, except for one case in which

the investment efficiency has a significance level of 10% for focusing firms. This could, however,

arise due to pure chance given the wide number of dependent variables and specifications examined.

While the paper does not report the coefficient for the inverse Mills ratio in the treatment effects

model, Toni Whited confirms to us in private communication, that this selection term is significant.

This suggests that self-selection is the main explanation for why firms experience efficiency gains

after focusing. The unobserved private information that leads firms to focus explains post-focusing

improvements in efficiency; controlling for self-selection, there is little evidence of any additional

efficiency gains.

10.4 Discussion

A key advantage of the diversification discount literature is that it has reasonably similar datasets,

so it is easier to see the changes due to different econometric approaches. By the same token,

it becomes easier to raise additional questions on model choice. We raise these questions here for

expositional convenience, but emphasize that the questions are general in nature and not particular

to the diversification discount literature.

One issue is statistical power. The diversification discount is significant using conventional

industry-size matching but it is insignificant using PS based matching methods. Is this because

the latter lack power? Çolak and Whited offer some welcome Monte Carlo evidence with respect

to their application, simulating data with sample sizes, means, covariance matrix, and covariates

with third and fourth moments equal to that observed in the actual data. They confirm that their

tests have appropriate size, and at the level of the treatment effects in the sample, there is a better

than 20% chance of detecting the observed treatment effect. More on these lines would probably

be useful.
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A second issue is the use of PS based matching methods as primary means of inference about

treatment effects. There are good reasons to be uncomfortable with such an approach. The main

issue is that propensity score methods assume that private information is irrelevant. However, this

assumption is probably violated to at least some degree in most corporate finance applications. In

fact, in the diversification literature, private information does empirically matter. Thus, using PS

methods as the primary specification seems inappropriate without strong arguments as to why firms’

private information is irrelevant. Heckman and Navarro-Lozano (2004) stress and show explicitly

that even small deviations from this assumption can introduce significant bias. Thus, the practice

followed in the finance literature of reporting private information specifications in conjunction with

matching models is probably appropriate, although more full discussion on reconciling the results

from different approaches would be useful.

A final comment is about the self-selection specifications used to control for private information.

While the literature has used versions of the baseline Heckman (1979) model, we emphasize that

this restriction is neither necessary nor desirable. Other models, such as switching regressions

and structural models are viable alternatives for modeling self-selection and private information.

Because these models come with their own additional requirements, it is not clear that they would

always be useful, but these issues are ultimately empirical.

11 Other applications of selection models

11.1 Accounting for R&D: Shehata (1991)

Shehata (1991) applies self-selection models to analyze the accounting treatment of research and

development (R&D) expenditures chosen by firms during the period of the introduction of FASB

ruling SFAS No. 2. This ruling pushed firms to expense rather than defer R&D expenditures. Other

studies examined the issue by comparing observed changes in R&D expenditures for a sample of

capitalizing firms with those of expensing firms. If firms self-select into the choice they prefer, it

is inappropriate to treat the choice as exogenous and assess its impact by comparing differences

between capitalizers and expensers. Shehata uses a switching regression instead.

Shehata uses a probit specification to model how firms choose an accounting method, and two

regressions to determine the level of the R&D expenditure, one for each accounting choice. This
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is, of course, the switching regression system of Section 3.1. Shehata estimates the system using

standard two-step methods. As discussed in Section 3.1, one useful feature of the system is the

estimation of counterfactuals: what the R&D spending would be for firms that expensed had they

elected to defer and vice-versa. Shehata reports that capitalizers are small, highly leveraged, have

high volatility of R&D expenditures, more variable earnings, and spend a significant portion of their

income on R&D activities. The second stage regression shows that the two groups of firms behave

differently with respect to R&D spending. For instance, R&D is a non-linear function of size and

is related to the availability of internally generated funds for capitalizers but the size relation is

linear and internally generated funds do not matter for expensers. Thus, it is more appropriate to

use a switching regression specification rather than the Heckman (1979) setup to model selection.

The inverse Mills ratio that corrects for self-selection matters in the second stage regression

for both groups. Thus, standard OLS estimates tend to understate the impact of SFAS No. 2

on R&D expenditures. Finally, Shehata (1991) reports predictions of the expected values of R&D

expenditures for both expensing and capitalizing samples had they elected to be in the other group.

The mean value of R&D for each group is lower under the unchosen alternative. The decline is

more pronounced for the capitalizing group, where it declines from $ 0.69 mm to $ 0.37 mm, while

the decline is from $ 0.85 mm to $ 0.79 mm for the expensing group.

11.2 Bankruptcy costs: Bris, Welch and Zhu (2005)

Bris, Welch and Zhu (2005) analyze the relative costs of bankruptcy under the Chapter 11 and

Chapter 7 procedures in the U.S., codes that are discussed more fully in Chapter 6 (John, Hotchkiss,

Mooradian, and Thorburn (2006)). The sample consists of close to 300 bankruptcy filings in Arizona

and Southern New York, the largest sample in the literature as of this writing.

The specification is the basic Heckman model of Section 2, with treatment effects in some

specifications. Step 1 is a probit specification that models the choice between Chapter 11 and

Chapter 7, conditional on deciding to file for bankruptcy. Bris et. al show that the procedural

choice is related to firm characteristics such as size, managerial ownership, and the structure of

debt including variables such as the number of creditors, whether the debt is secured or not, and

the presence of banks as a company creditor. Step 2 involves modeling the costs of bankruptcy.

Bris et al. analyze four metrics to specify the LHS dependent variable: the change in value of the
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estate during bankruptcy; the time spent in bankruptcy; the expenses submitted to and approved

by the bankruptcy court; and the recovery rates of creditors. These are modeled as a function of

a comprehensive set of regressors that include linear and non-linear functions of firm size, various

proxies for the structure of the filing firm and managerial ownership. Because the variables in the

two stages are similar, the study essentially relies on non-linearity for identification.

Bris et al. find no evidence that firms that were more likely to self-select into Chapter 11 were

any faster or slower in completing the bankruptcy process. Controlling for self-selection, Chapter 11

cases consumed more fees, not because Chapter 11 is intrinsically the more expensive procedure, but

because of intrinsic differences in firms that choose to reorganize under this code. After controlling

for self-selection, Chapter 11 emerges as the cheaper mechanism, and Bris et al. report that self-

selection explains about half of the variation in bankruptcy expenses. With self-selection controls,

Chapter 11 cases had higher recovery rates than Chapter 7 cases. In sum, selection has a significant

impact on estimates of reorganization costs under different bankruptcy codes. After controlling for

selection, Chapter 7 takes almost as long, consumes no less and probably more in professional fees,

and creditors rarely receive as much, so there is little evidence that it is more efficient than Chapter

11 reorganizations.

11.3 Family ownership and value: Villalonga and Amit (2006)

Villalonga and Amit (2006) examine the effect of family ownership, control, and management on

value for a sample of Fortune 500 firms from 1994 to 2000. The specification is a standard Heckman

style selection model of Section 2 with a treatment effect.

The first step is a probit specification that models whether a firm remains family owned or not.

Family ownership is defined as firms in which the founding family owns at least 5% of shares or

holds the CEO position. In the second step, value, proxied by Tobin’s Q, is regressed on a dummy

variable for family ownership, industry dummy variables, the Gompers, Ishii and Metrick (2003)

shareholder rights index, firm-specific variables from COMPUSTAT, outside block ownership and

proportion of non-family outside directors, and, of course, the inverse Mills ratio that corrects for

self-selection. To assist in identification, Villalonga and Amit include two additional instruments

in the selection equation lagged Q and idiosyncratic risk. Idiosyncratic risk is presumably related

to family ownership but not to Q if only systematic risk is priced by the market.
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Villalonga and Amit report that family ownership has a positive effect on value in the overall

sample and in sub-samples in which the founder is the CEO. Interestingly, the sign is negative

when the founder is not the CEO. Villalonga and Amit interpret their findings as evidence that the

benefits of family ownership are lost when the family retains control in the post-founder generation.

Their results strengthen when they incorporate a control for self-selection. In the self-selection

specification, the inverse Mills ratio is significant and negative in the overall specification and

sub-samples in which the CEO is the founder. In these samples, family ownership appears to

be associated with unobserved attributes that are negatively related to value. These unobserved

attributes positively impact value if the founder is not the CEO.30

12 Other applications of matching methods

12.1 Bank debt versus bonds: Bharath (2004)

Debt financing by a corporation gives rise to conflicts of interest between creditors and shareholders

that can reduce the value of the firm. Such conflicts are limited more effectively in bank loans than in

public debt issues if banks monitor. Bharath (2004) measures the size of agency costs by calculating

the yield spread between corporate bonds and bank loans (the Bond-Bank spread) of the same firm

at the same point in time. To quantify the difference, Bharath needs to match bonds with bank

loans of the same firm at the same point in time and having substantively identical terms. The

matching problem is complicated by the fact that bank loans and public bonds are contractually

very different on multiple dimensions such as credit rating, seniority, maturity, and collateral.

Bharath argues that because bank loans and bonds are matched at the same point of time and

for the same firm, matching based on observables should adequately control for differences between

bank debt and public debt. Thus, propensity score based matching methods are appropriate tools

to control for differences between bank loans and public debt. Bharath uses the propensity score

matched difference between bank and bond credit spreads as the treatment effect, or the value

30An interesting question raised by this study is survivorship (e.g., Brown, Goetzmann and Ross (1995)). Perhaps

family owned firms that survived and made it to Fortune 500 status are of better quality, and hence these firms are

valued more. This question can perhaps be resolved by looking at broader samples that incorporate smaller firms

outside the Fortune 500 universe. Bennedsen, Nielsen, Perez-Gonzalez, and Wolfenzon (2006) take a step in this

direction.
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added by banks. The spread can be interpreted as the value added by banks in enforcing better

investment policies, or more generally, as the price of the “specialness” of banks due to their ability

to monitor, generate information, or better renegotiate loans, or even perhaps other explanations

such as monopoly rents.

Using a sample of over 15,000 yield observations, Bharath finds that the Bond-Bank spread

is negative for high credit quality firms and positive for low credit quality firms. He interprets

his findings as being consistent with the view that for high quality firms, the benefits of bank

monitoring are outweighed by the costs of bank hold-up. This causes the spread to be negative,

indicating that bank debt offers few benefits for high quality firms. For low quality firms, the

opposite is true, causing the spread to be positive. The magnitude of the potential agency costs

mitigated by banks is more important for poor quality firms, justifying the decision to borrow from

banks.

12.2 Matching and long-run performance: Cheng (2003), Li and Zhao (2006)

A vast literature on market efficiency examines the long-run stock return after events such as IPOs,

SEOs, share repurchases, listing changes, etc. The semi-strong version of the efficient markets

hypothesis predicts that long-run returns should be zero on average. However, several papers

report empirical evidence against the efficiency hypothesis (Fama (1998)). In most studies, post-

event buy-and-hold returns are systematically positive or negative relative to benchmarks over

periods of three to five years. Chapter 1 (Kothari and Warner (2006)) offers an overview of this

literature. We focus on applications of matching models to assess long-run performance.

To test whether abnormal returns are zero or not, one needs a model of benchmark returns. As

discussed in Chapter 1, the standard approach, is to match an event firm with a non-event firm on

between two and four characteristics that include size, book-to-market, past returns, and perhaps

industry. This method runs into difficulties when the number of dimensions becomes large and

the calipers become fine, when it becomes difficult to generate matching firms. Propensity score

(PS) based matching methods reviewed in Section 4.3.2 are potentially useful alternatives in this

scenario. Two recent papers, Cheng (2003) and Li and Zhao (2005) use PS methods to reexamine

the long-term performance of stock returns after SEOs. Both papers find that while characteristic-
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by-characteristic matching results in significant long-term abnormal returns after SEOs, abnormal

returns are insignificant if one uses propensity score based matching methods instead.

Cheng (2003) studies SEOs offered between 1970 and 1997 for which necessary COMPUSTAT

data are available on firm characteristics. She finds significant buy-and-hold abnormal returns of

between -6% and -14% over three to five years in the full sample and various sub-samples when

matches are constructed on size, industry and book-to-market. She then uses three logit models,

one for each decade, to predict the probability of issuance. Several firm characteristics such as size,

book-to-market, industry, R&D, exchange, as well as 11-month past returns predict the issuance

decision. Cheng matches each issuer with a non-issuer in the SEO year with a similar propensity

score (i.e., predicted probability). She finds little evidence of significant abnormal returns except

for one sub-sample in the 1970s.

Li and Zhao undertake an exercise similar to that in Cheng (2003) for issuers from 1986 to 1997.

They show that characteristic-by-characteristic matching produces inadequate matches between

issuers and non-issuers in terms of average size.31 They estimate propensity scores with size,

book-to-market, and past returns in three quarters prior to issuance, one model per year, and add

interaction terms for better predictions and delete firms as necessary to have a common support. In

their final sample, conventional matching gives average three-year buy-and-hold abnormal returns

of -16%, but this drops to an insignificant -4% with PS matching.

Cheng (2003) and Li and Zhao (2005) emphasize that PS methods are merely substitutes for

characteristic-by-characteristic matching of observables. This perspective is probably appropriate.

The main issue in these applications is the data driven nature of the exercise in fitting probit

models. Characteristics and interaction terms are added as needed to achieve balance in character-

istics and propensity scores. While we recognize that a reasonable probit model seems necessary

to place faith in treatment effect estimates, the search required to achieve balance, however trans-

parent, nevertheless raises data dredging concerns and even inconsistency of estimates (Heckman

and Navorro-Lozano (2004)). The general use of PS methods in studies of long-term stock return

or operating performance as an alternative to methods studied in Barber and Lyon (1996, 1997),

Barber, Lyon and Tsai (1999), and Kothari and Warner (1997) remains an open question.

31Medians are not reported, so it is hard to assess the role of outliers.
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13 Bayesian methods

13.1 Matching: Sørensen (2003)

Investors differ in their abilities to select good investments, and in their ability to take a given

investment and monitor and manage it so as to add value to what they invest in. A key question in

the venture capital literature is the differentiation of selection from value-addition. To what extent

are better performing venture capitalists more successful because of their ability to select good

investments rather than their ability to value-add to their investments? Sørensen (2003) employs a

matching-selection model to separate these two influences, using Bayesian MCMC (Markov Chain

Monte Carlo) methods to estimate it.

In Sørensen’s model, there is a set of venture capital investors indexed by i. Each investor

evaluates a set of potential investments indexed by j and ultimately invests (i.e., becomes the

lead investor) in a subset of these. Once an investment occurs, its outcome is specified as the

variable IPO which equals one if the investment results in a public offering and zero otherwise. In

Sørensen’s model, feasible investments for each investor are partly determined by the characteristics

of the other agents in the market. These characteristics are related to the investment decision but

unrelated to the investment outcome, so they provide the exogenous variation used for identification

of the model. On the other hand, this type of sorting also causes interaction between investment

decisions by different venture capitalists, which leads to a dimensionality problem and considerable

numerical difficulties in estimation. Bayesian methods offer feasible routes for estimation.

Sørensen specifies normally distributed and diffuse prior beliefs with prior variances that are over

300 times the posterior variance. He assumes that error terms for different deals are independent.

There are three sets of exogenous variables. The characteristics of the company includes the stage

of development of the company and industry dummies. The characteristics of the venture capital

investor include his experience and amount of capital he has available. The characteristic of the

market is the year of the investment. There are two parameters of central interest. One is the

access of better venture capitalists to deal flow, which is captured by the experience of the venture

capitalist. The other is the synergy between venture capitalists and their target investments or

the value added by venture capitalists, which is captured by the correlation between the private

information in the decision to invest and the probability of going public.
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Sørensen’s final sample includes 1,666 investments made by 75 venture capitalists between 1975

and 1995 in the states of California and Massachusetts. Experience is proxied by the total and

stage-of-life-cycle-specific number of deals done since 1975. Sørensen reports a number of interesting

findings. He finds evidence for sorting. Experienced investors are more likely to have access to the

better deals whose probability of going public (and doing so faster) increases by about two-thirds.

This type of sorting explains about 60% of the increased probability of success, leaving about 40%

for the synergies, or the value added by venture capital investors. Sørensen explains why one might

get different results from estimating a standard selection model compared to one with sorting.

13.2 Switching regressions: Li and McNally (2004), Scruggs (2006)

Li and McNally (2004) and Scruggs (2006) offer interesting applications of Bayesian methods to

estimate switching regression models of self-selection. Both papers emphasize that the value of the

Bayesian approach is not merely the difference in philosophy or technique; rather, the techniques

offer insights not readily available through classical methods. The application in Li and McNally

(2004) is the choice of a mechanism to effect share repurchases, while the application in Scruggs

relates to whether convertibles are called with or without standby underwriting arrangements. For

convenience, we focus on Li and McNally, but substantially similar insights on methodology are

offered in the work by Scruggs.32

Share repurchases started becoming popular in the 1980s as a way to return excess cash to

shareholders in lieu of dividends. Repurchases tend to be more flexible in timing and quantity

relative to the fixed cash flow stream expected by markets when companies raise dividends. Share

repurchases can be implemented in practice as a direct tender offer or more open-ended open market

repurchases. Li and McNally (2004) investigate the choice between the two mechanisms and their

impact on share price reactions to announcements of repurchases using Bayesian self-selection

methods.

32Wald and Long (forthcoming) present an application of switching regression using classical estimation methods.

They analyze the effect of state laws on capital structure.

56



Li and McNally propose the following system of equations to analyze the choice of a repurchase

mechanism

I∗ = Ziγ + ηi (69)

p∗1 = X1β1 + ε1 (70)

p∗2 = X2β2 + ε2 (71)

y∗1 = W1α1 + v1 (72)

R∗
1 = V1θ1 + u1 (73)

R∗
2 = V2θ2 + u2 (74)

where I∗ is an unobserved latent variable representing the incremental utility of tender offers

over open market repurchases, p∗1, y
∗
1, R

∗
1 are the percentage of shares sought, tender premium and

announcement effects under the tender offer regime, and p∗2, R
∗
2 are the proportion sought and

announcement effects in an open market repurchase regime. The error terms in Eqs. (69)-(74) are

assumed to have a multivariate normal distribution.

The system of equations (69)-(74) represents a switching regression system discussed in Section

3.1, but with more than one regression in each regime. The key issue in estimating the system

is the lack of information on unobserved counterfactuals. We observe outcomes in the repurchase

technique actually chosen by a firm but do not explicitly observe what would happen if the firm had

chosen the alternative technique instead. Li and McNally employ MCMC methods that generate

counterfactuals as a natural by-product of the estimation procedure. This approach involves a data

augmentation step in which the observed data are supplemented with counterfactuals generated

consistent with the model structure. The priors about parameters are updated and posteriors

obtained using standard simulation methods after which the additional uncertainty due to the data

augmentation step can be integrated out. Observations on counterfactual choices and outcomes are

generated as part of the estimation procedure. These can be directly used to examine the impact of

choosing a given type of repurchase mechanism not just in isolation, but also relative to the impact

of choosing the unchosen alternative.

The sample in Li and McNally comprises 330 fixed price tender offers, 72 Dutch auction tender

offers, and 1,197 open market repurchases covering time periods from 1962 to 1988. In terms of

findings, Li and McNally report that firms choose the tender offer mechanism when they have
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financial slack and large shareholders that monitor management. Firms prefer the open market

repurchase in times of market turbulence or weak business conditions. Unobserved private infor-

mation affects both the type of the repurchase program and the repurchase terms and is reflected

in the stock market announcement effects. The estimates of counterfactuals are quite interesting.

For instance, if the open market repurchasers had opted for tender offers, the proportion of shares

sought would have been 36% (versus actual of about 7%) and the tender premium would have been

33% compared to 0% actuals, and the five-day announcement effect would be 16% compared to the

actual announcement effect of 2.2%. Likewise, tender offer firms would have repurchased 10.6%

(actual = 19.7%) and experienced announcement effects of 3.7% (actual= 10.2%). Firms appear

to have a comparative advantage in their chosen repurchase mechanisms.

14 Conclusions

Our review suggests that self-selection is a growth area in empirical corporate finance. The rapidly

expanding number of applications undoubtedly reflects the growing recognition in the finance pro-

fession that self-selection is an important and pervasive feature of corporate finance decisions. The

range of econometric models in use is also growing as techniques diffuse from the econometrics

literature to finance. However, the key issue in implementing self-selection models still remains the

choice of specification, particularly the economic assumptions that make one model or another more

appropriate for a given application. One size does not fit all. Each self-selection model addresses

a different kind of problems, places its own demands on the type of data needed, and more impor-

tantly, carries its own baggage of economic assumptions. The plausibility of these assumptions is

perhaps the primary criterion to guide what is used in empirical applications.
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